
ARTICLE

The effects of maternal care on the developmental
transcriptome and metatranscriptome of a wild bee
Katherine D. Chau1, Mariam Shamekh1, Jesse Huisken1 & Sandra M. Rehan 1✉

Maternal care acts as a strong environmental stimulus that can induce phenotypic plasticity

in animals and may also alter their microbial communities through development. Here, we

characterize the developmental metatranscriptome of the small carpenter bee, Ceratina cal-

carata, across developmental stages and in the presence or absence of mothers. Maternal

care had the most influence during early development, with the greatest number and mag-

nitude of differentially expressed genes between maternal care treatments, and enrichment

for transcription factors regulating immune response in motherless early larvae. Metatran-

scriptomic data revealed fungi to be the most abundant group in the microbiome, with

Aspergillus the most abundant in early larvae raised without mothers. Finally, integrative

analysis between host transcriptome and metatranscriptome highlights several fungi corre-

lating with developmental and immunity genes. Our results provide characterizations of the

influence of maternal care on gene expression and the microbiome through development in a

wild bee.
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Parental care is an evolutionary adaptation in many species
that has a profound impact on an individual’s development
and species evolution1. Various forms and levels of parental

care exist across mammals2,3, birds4,5, fish6,7, and insects8,9,
directly enhancing the fitness of offspring by providing protection
from predators and parasites, prolonged access to food supply,
shelter, and social interactions10,11. Moreover, parental care has
marked impacts on immunity and microbiome, such as the
transfer of core microbes essential for offspring survival as
observed in earwigs12, burying beetles13, African clawed frogs14,
and mice15. The neurobiological and behavioral effects of parental
care have been widely researched in social species, as it plays an
essential role in the evolution of social behavior16,17. Abnorm-
alities in behavior and brain chemistry have also been docu-
mented in other social mammals. Studies in rats have shown that
low maternal care levels (characterized by low licking and
grooming behavior) are linked to higher levels of stress reactivity
in offspring18. In birds, where biparental care is prevalent, even
the deprivation of one parent may result in permanent effects on
the hypothalamic–pituitary–adrenal (HPA) axis, responsible for
stress response and regulation of physiological processes5.

In particular, social insects are powerful model systems to
explore the intricacies of parental care in the development of
offspring. Bees demonstrate a highly diverse range of social
behaviors, from obligately eusocial colonies with reproductive
queens and foraging workers to solitary nests in which mothers
do all tasks alone19. Such differences in social behavior can exert
considerable influence on an organism’s microbiome and gene
expression. Eusocial species typically receive their microbiome
through horizontal transmission from nestmates, whereas solitary
species acquire theirs horizontally from the wider environment20.
Furthermore, facultatively social bee offspring reared with or
without parental care display changes in gene expression patterns
indicating that parental care can drive regulatory processes at the
molecular level in offspring. For example, the adult small car-
penter bee Ceratina calcarata showed more aggression and
avoidance when reared without a mother, a behavioral change
associated with changes in DNA methylation and gene expression
patterns21.

Social and solitary insects also display differences in develop-
ment. Obligately eusocial insects possess distinct castes, produced
during development through differences in larval diet and
developmental gene regulatory networks, ultimately resulting
in different microbiome compositions for each caste22,23. While
developmental castes are not present in facultatively social and
solitary bees, recent studies have found that they exhibit clear
changes in microbiome composition and richness across devel-
opmental stages24,25. Additionally, bees undergo complete
metamorphosis and experience drastic changes in microbiome
composition during defecation at the prepupal stage, which
empties the gut, leading to an altered adult microbiome25. Gut
microbiomes host a suite of taxa belonging to diverse groups such
as bacteria, fungi, protists, viruses, and parasites (e.g., nematodes
and arachnids) that individually and collectively impact host
health and recently discovered important associations to host
behavior via the gut–brain axis26. Microbiomes are, in turn,
shaped by the environment and stressors associated with the host,
which includes the influence of maternal care. For instance,
breastfed infants develop healthy microbiomes supporting
stronger immunological defenses and improved
neurodevelopment27. In insects, earwigs reared without mothers
had a reduced microbiome and suffered greater mortality than
offspring obtaining essential anti-fungal bacteria from their
mothers12. Hence, studies on the bee’s gut microbiome demon-
strate an important role of microfauna in the healthy develop-
ment of bee immunity28, digestion and nutrition29, behavior and

cognitive ability30, reflecting the importance of host–microbiome
species interactions25,31.

Our model species, C. calcarata is a subsocial bee, which is
characterized by prolonged maternal care, overlapping genera-
tions, and parent-offspring interactions8,32,33. The methylome,
genome, and multiple transcriptomes of this species have been
sequenced34–36. C. calcarata mothers are nest loyal, typically
creating a single nest each year after emerging from overwintering
in natal nests to mate in the spring32. Mothers excavate a linear
tunnel in the pith of dead plant stems and sequentially lay one egg
at a time on a freshly collected pollen ball before closing a cell by
creating a wall from pith shavings32. As offspring develop,
mothers continue to guard the nest and inspect the developing
brood by breaking down and reconstructing cell walls and are,
therefore subsocial32. This is done until offspring reach adult
maturity, then they will continue to guard and feed adult off-
spring until late summer or fall36. Maternal care via guarding
prevents fungal and bacterial outbreaks throughout offspring
development (Fig. 1). While maternal care effects were explored
in this species at the adult stage via gene expression patterns in
the brain21, and its microbiome was explored through
development25, we do not know what the changes in gene
expression patterns are across this species’ development, nor do
we know how maternal care impacts its developmental micro-
biome. This model species offers a natural experiment for
studying the implications of maternal care for the connected
phenomena of development and microbiome diversity.

Here we characterize the developmental transcriptome of C.
calcarata and experimentally compare how the presence or
absence of maternal care impacts gene expression patterns across
development. Second, we examine these same offspring’s micro-
biomes across development and between maternal care groups.
Finally, we integrate gene regulatory networks and co-expression
with metatranscriptomic data across development and care
groups to identify key candidate genes in offspring of various ages
impacted by the absence of maternal and modified microbiomes.
We predict dysregulation of offspring gene expression and altered
metagenomic microbial communities in the absence of maternal
care. This study provides unique insights into our understanding
of offspring development, maternal care, stress, and immune
response not only important for offspring health but also parental

a. Care

b. No-Care

Fig. 1 Development of Ceratina calcarata offspring in the presence or
absence of mothers. a Mothers remain in nests throughout offspring
development until adulthood, providing cleaning and nest guarding (care).
b Absence of mothers results in dirtier nests due to overabundance of fungi
(no-care). Illustration created in full by Katherine Odanaka.
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care in animals, including intergenerational inheritance more
broadly.

Results
Developmental transcriptome. Four generalized clusters of time
course gene expression across C. calcarata offspring development
were identified, summarizing the 19 individual stages into four
overall developmental stages: (1) early larvae, (2) late larvae, (3)
pupae, and (4) callows (Figs. 2 and S1; Supplementary Data 4).
Overall, in 1957 unique differentially expressed genes (DEGs)
were identified based on developmental stage. Early larval
development had 340 DEGs uniquely upregulated when com-
pared to other stages (Supplementary Data 5; Fig. S2). We also
implemented multiple analyses (WGCNA37,38, DESeq239,40, and
MaSigPro41) to further identify recurrently well-supported DEGs
(i.e., robust DEGs) for each stage as these DEGs likely play a
critical role in development, which resulted in 156 robust DEGs
in early larvae that include nucleolar GTP-binding protein 1
(non1), nucleolar protein 58 (nop58), and eukaryotic translation
initiation factor 3 subunit C (eIF3-S8) (Supplementary Data 4).
Enriched GO terms for all early larvae upregulated genes related
to cell growth and processes, such as TORC2 signaling, regulation
of the cell cycle, physiological development, and morphogenesis
(Supplementary Data 5). Significant transcription factor (TF)
enrichment determined by STREME42 found no significant motif
enrichment in early larvae when compared to other develop-
mental stages (Supplementary Data 27). Out of the 383 upregu-
lated DEGs unique to late larvae, 37 robust DEGs encoded
kinesin-like proteins, such as KLP61F and KIF18A, essential
cytoskeletal motor proteins (Supplementary Data 5 and 11).
DEGs upregulated in late larvae were enriched for several cell
cycle regulatory pathways and digestive and metabolic processes
(Supplementary Data 6). Further analysis using WGCNA net-
work clustering revealed late larval DEGs formed three significant
clusters enriched for physiological developmental processes and
metabolic processes, but also stress response pathways (e.g.,
detoxification, cellular response to stress; Supplementary
Data 12). Late larval DEGs were enriched for motifs accom-
modating TFs mainly belonging to C2H2 zinc finger and SMAD
factors (Supplementary Data 27), three of which were also
identified as DEGs and include mothers against dpp (mad), TF
GAGA (trl), and pair-rule protein odd-paired (opa) (Fig. 3). GO
enrichment of late larval motifs were mainly involved with cell
differentiation and gene regulatory processes whereas TF DEGs
were mainly involved with embryogenesis, development, and
neurodevelopment (Fig. 3, Supplementary Data 28).

The pupal stage had 1010 uniquely upregulated DEGs, with
113 robust DEGs that include genes involved with nervous system

development such as leucine-rich repeat-containing protein 24
(LRRC24), neural-cadherin (CadN), and Down syndrome cell
adhesion molecule-like protein (Dscam2; Supplementary Data 5).
GO enrichment for pupal development is related primarily to
protein modification and neurodevelopmental processes such as
central nervous system neuron development and neuron fate
determination (Supplementary Data 6 and 12). Pupal DEGs
were enriched for a single TF motif that binds a C2H2 zinc
finger, ZNF610 (Supplementary Data 27), which harbors diverse
biological roles such as segmentation and oogenesis, and
several molecular functions including protein binding and
exonuclease activity (Supplementary Data 28). Callows had 224
uniquely upregulated DEGs and 78 robust DEGs, some of which
encode mitochondrial enzymes, which include isocitrate dehy-
drogenase subunit betaC mitochondrial (IDH3B), NADH dehy-
drogenase iron-sulfur protein 42 C mitochondrial (NDUFS4), and
isocitrate dehydrogenase subunit gamma C mitochondrial
(IDH3G) (Supplementary Data 5). GO enrichment all upregu-
lated DEGs in callows related to eye development and structural
organization (Supplementary Data 6), wing disc and head
development, sensory perception, and several biosynthetic and
metabolic processes (Supplementary Data 12). Unique callow
DEGs were focused on RNA metabolism (e.g., tRNA metabolic
processes) and protein transport (Supplementary Data 6).

Effects of maternal care on the developmental transcriptome.
To experimentally assess the effects of maternal care on the
developmental transcriptome, we performed transcriptional
analysis on care and no-care developing brood. Overall, when
care and no-care conditions were compared across all stages, 558
DEGs were unique to care, and 685 were unique to no-care
(Supplementary Data 7). Cared-for bees were enriched for
immunity, metabolism, and developmental processes, whereas
no-care bees were mostly related to cellular development, cellular
responses, and regulatory pathways (Supplementary Data 8).
Comparisons between all care and no-care individuals revealed
motif enrichment for a significant motif enriched only in cared
individuals that binds the TF button-head (btd), which is involved
with head segmentation (Supplementary Data 27). Clustering of
two principal components (PC1 49% and PC2 17%) explained
66% of the variance in expression across the developmental stages
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Fig. 2 Generalized models of median gene expression underpinning the
development of Ceratina calcarata. The four overall developmental stages
include early larvae, late larvae, pupae, and callow (see Fig. S1 for
reference).
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Fig. 3 Principal component analysis of Ceratina calcarata developmental
transcriptome in the presence or absence of maternal care. PCA plot of
the four main developmental stages of C. calcarata in the presence of
maternal care (care) and in the absence of maternal care (no-care). Ellipses
for care and no-care groups are shown for each developmental stage.
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in the presence and absence of maternal care (Fig. 3). No-care
treatments resulted in differential gene expression (>4000 DEGs)
between care and no-care conditions at each developmental stage
(Figs. 4 and S3; Supplementary Data 9). In total, 4953 unique
DEGs (Supplementary Data 9) were identified across all four
stages and maternal care groups, of which 898 were uniquely
identified as hub genes in our WGCNA network analysis (Sup-
plementary Data 13).

Early larvae had 3755 upregulated DEGs due to differences in
maternal care, with more DEGs identified in no-care early larvae
(Fig. 4a). Negative binomial and network analyses identified
venom allergen 3 (involved in the immune response) and
digestion inhibitory genes such as chymotrypsin inhibitor and
lysosomal aspartic protease to be upregulated in no-care early
larvae (Supplementary Data 9 and 13). Inhibition of peptidases
such as chymotrypsin has been shown to interfere with insect
metabolism43, whereas proteases are involved with insect
immunity against pathogenic invasions44. Conversely, defensin
1 was upregulated in care early larvae, an important gene for
antimicrobial peptides in insects45 (Supplementary Data 9). Gene
Ontology (GO) revealed genes upregulated in the care early larvae
were enriched for immune processes (e.g., natural killer cell
activation, phagocytosis, and T cell activation). No-care early
larvae were instead enriched for protein movement and
reproductive purposes (e.g., meiotic cell cycle, embryo develop-
ment, and protein targeting; Supplementary Data 10). GO
enrichment for the top three significant modules from WGCNA
results for each maternal care group, and stage showed that
maternal care presence leads to regulatory pathways focused on
cellular development and gene regulation, but also immune
defenses and metabolism (e.g., response to bacterium and
monosaccharide metabolic process; Supplementary Data 14).
WGCNA modules in no-care early larvae were conversely
enriched for antigen processing, epithelial cell proliferation, and

several catabolic processes (Supplementary Data 14). Further-
more, among all maternal care+stage group comparisons,
significant TFs were only detected in no-care early larvae DEGs
which were enriched for a motif that binds to the chromatin-
linked adapter for MSL proteins (CLAMP) and protein hairy (h)
(Table 1; Supplementary Data 27). GO enrichment of this motif is
related to several developmental processes, such as brain
development and chromatin assembly (Supplementary Data 28).

No-care late larvae had 206 upregulated DEGs (Fig. 4b),
including genes involved with homeostatic compensation
mechanisms such as potassium voltage-gated channel protein
(shab). DEGs upregulated in late larvae were enriched for
reproductive processes and physiological development, including
mesoderm development and rhythmic process (Supplementary
Data 10). DEGs upregulated in no-care late larvae were enriched
for ion transmembrane transport, protein import, and regulation
of transporter activity (Supplementary Data 10). Care and no-
care late larvae shared biological processes enriched for light
detection, catabolic processes, and stress response (Supplemen-
tary Data 14).

Pupae reared without mothers had 506 upregulated DEGs,
including LRRC15, involved in insect immune response46

(Fig. 4c). GO enrichment of upregulated DEGs included protein
phosphorylation in care pupae or protein dephosphorylation in
no-care pupae (Supplementary Data 10), whereas network
clustering found identical modules in care and no-care pupae
enriched for compound eye development, digestive system
development, and regulation of mitotic cell cycle (Supplementary
Data 14).

Among callow offspring, 622 DEGs were upregulated in no-
care, including hexamerin, which is known to be involved in
immune response47, and calcium/calmodulin-dependent protein
kinase II (CAMKII), known to be involved with learning and
memory48 (Fig. 4d). GO enrichment for care callows include
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protein modification processes and several physiological devel-
opmental processes such as mesoderm development/formation,
exocrine system development, salivary gland development, and
gland morphogenesis (Supplementary Data 10). No-care callows
GO enrichment include terms such as RNA modification, tRNA
modification, response to hormone, and secretion (Supplemen-
tary Data 10). Furthermore, GO enrichment of WGCNA network
clustering for care and no-care callow DEGs revealed major
physiological development, such as wing disc development, and
several metabolic and biosynthetic processes (Supplementary
Data 14). However, WGCNA analysis also revealed that care
callows were enriched for unique physiological processes such as
locomotion and metamorphosis, whereas no-care callows were
uniquely enriched for cell response pathways such as cAMP-
mediated signaling and sensory perception of pain (Supplemen-
tary Data 14). Interestingly, no significant motif enrichment was
identified in callows in any of the developmental stage

comparisons or stage+ care group comparisons. Finally, RFC
models using transcriptomic data revealed that gene expression
data was better at predicting offspring based on their develop-
mental stage (average accuracy of 94%; Supplementary Data 19),
rather than the maternal care group (average accuracy of 71.6%;
Fig. 5a; Supplementary Data 18).

Effects of development and maternal care on the microbiome.
Metatranscriptomic analyses using metaSPADES49 identified 842
microbial genera across developmental stages and care groups.
The most dominant microbial group is fungi, contributing to
approximately 85% of the microbiome composition, followed by
bacteria (8%) based on contig abundance (Supplementary
Data 15). Absence of mothers resulted in a significant difference
in taxa composition (Bray–Curtis PERMANOVA F= 7.72, df=
3, p= 0.001, Fig. 6) and alpha diversity across developmental

Table 1 Enriched transcription factor binding motifs.

Category

TF gene
name

Role Ref. Care No-care Early
larvae

Late larvae Pupae Callow

btd Head segment development 110 0.013
ZNF148 Muscle differentiation 111 0.046
ZNF610 DNA methylation, carcinogenesis 112 0.046 0.0045
Mada Eye/wing development 113,114 0.031 DEG
Clamp Chromatin accessibility, male dosage compensation 115 0.019 0.019 0.021
Trl Embryogenesis, oogenesis, eye development 116 0.0046 DEG
Opa Embryogenesis, circadian rhythm, adult head

development, neural development, behavior

117 0.0052 DEG

h Embryo patterning, heart development, hypoxia
tolerance

118,119 0.047 0.047 DEG

Transcription factor binding motifs significantly enriched in upstream regions of upregulated DEGs across maternal care and stage groups (see Supplementary Data 27 for category comparisons).
Transcription factor names are presented with a brief description of regulatory roles. Q-values which is the minimal false discovery rate for multiple-testing correction, are shown in cells; empty cells
indicate no significant (E > 0.05) motif enrichment identified in the category. Associated transcription factors identified as a DEG in this study are labeled as DEG.
aIf multiple motifs are matched to the same transcription factor in the same category, a higher q-value is presented.
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stages (Shannon ANOVA F= 1.26, df= 3, p= 8.52e−09; Fig. 6;
Supplementary Data 16). Metatranscriptomic data performed
better in predicting the maternal care group (average accuracy of
70%; Supplementary Data 20) rather than the developmental
stage (average accuracy of 61%; Fig. 5b; Supplementary Data 21),
even when using bacterial, fungal, or bacterial+fungal genera
only (Fig. S4; Supplementary Data 20 and 21). Furthermore, there
is a striking difference in microbiome composition from fully
grown larvae and prepupae stages across all individuals (Fig. 6)
and within groups (Fig. S5).

Maternal presence significantly affected alpha diversity (Shan-
non ANOVA F= 16.75, df= 1, p < 0.01) and community
composition (Bray–Cutis PERMANOVA F= 10.43, df= 1,
p= 0.001) (Supplementary Data 17) during early larvae devel-
opment, with greater diversity in no-care offspring. Aspergillus
was the top fungal genus that dominated the community
composition in early larvae in both care and no-care groups
(Supplementary Data 22). However, Aspergillus’ relative abun-
dance was significantly greater in no-care individuals (28%)
relative to offspring reared with mothers (16%; two-tailed t-test
t=−4.58, df= 38, p < 0.01). Aspergillus was also identified in
SIMPER50 analysis as a top 10 contributor to metagenomic
composition dissimilarity (Supplementary Data 23) and was the
only fungus identified as a top 10 feature during random forest
classification (RFC) model testing for maternal care influence
when using all taxon groups using the randomForest package in
R51 (Supplementary Data 20). Other top genera based on relative
abundance and identified by SIMPER were also fungi, including
Ascosphaera and Paecilomyces, which also had greater abun-
dances in no-care early larvae (Supplementary Data 22 and 23).
Negative binomial distribution analysis (NBDA) obtained from

DESeq2 analysis corroborated our earlier findings, with significant
overrepresentation of fungi in early larvae (Supplementary
Data 24), as well as a significant WGCNA cluster of hub fungi
in no-care early larvae (Supplementary Data 26). In late larvae,
taxa composition and richness did not show significant
differences between care groups (Supplementary Data 17).
Indeed, the top genus, Aspergillus, was not significantly different
in abundance between no-care and care individuals (two-tailed t-
test t= 1.27, df= 48, p= 0.212).

Pupal taxa richness was significantly different from the larval
stages but were not different from callows (Supplementary
Data 16). Interestingly, while pupae defecate and lose most of
their gut microbiota, there was a significant difference in taxa
richness and composition between care groups (Supplementary
Data 17), with different top genera depending on maternal care
presence (Supplementary Data 22). Aspergillus and Ascosphaera
were significantly overrepresented in care pupae and suggest
maternal presence may be reintroducing fungal taxa during the
pupal stage (Supplementary Data 24). WGCNA network analysis
found the top fungal cluster from the larval stages also evident in
pupae (Fig. 7, Supplementary Data 25).

The top genera in callows were more diverse in taxa richness,
and composition differed significantly between care groups
(ANOVA, F= 11.69, df= 1, p < 0.001; Bray–Curtis PERMA-
NOVA F= 2.36, df= 1, p= 0.015; Supplementary Data 17). For
instance, callows in the presence of mothers were dominated by a
mix of fungi (e.g., Aspergillus and Ascosphaera), viruses (e.g.,
Nepovirus and Betacoronavirus), and protists (e.g., Gregarina and
Plasmodium; Supplementary Data 22). Conversely, no-care
callows were mostly dominated by bacteria, including notable
genera such as Pseudomonas, Acinetobacter, and Burkholderia.
There was no significant overrepresentation of taxa between
callow care groups or between callows and other developmental
stages (Supplementary Data 24). Interestingly, WGCNA network
analysis found unique but smaller modules for callows, which
included clusters of primarily bacteria and protists (Fig. 7;
Supplementary Data 26). As such, callows differed the most in
module clustering and composition (Fig. 7). The presence of
mothers contributes to slightly greater taxa abundances, as
suggested by hub genera identified in cared callows but not in
uncared callows (Supplementary Data 25).

Comparison and integration of gene expression and meta-
transcriptomic data. We used the mixOmics52,53 R package to
run an integrative correlation analysis of gene expression and
metatranscriptomic abundance data which revealed that Asco-
sphaera held the majority of top positive correlations in cared-for
offspring, primarily in pupal and callow developmental stages
(Fig. 8a). Ascosphaera correlated with mitochondrial respiratory
genes and enzymes (i.e., UQCRFS1, IDH3B, IDH3G) in cared
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Fig. 7 Significant WGCNA modules identified at the genus level. a Shows each developmental stage (two modules for early larvae, one for late larvae,
one for pupal, and two for callow). In b, hub genera are highlighted in dark gray, and c the module compositions are colored by domain. Nodes are sized
according to whether they are a hub genus (but also colored in diagram B).
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pupae, and correlated with ribosomal developmental genes (i.e.,
non1, nop16, and nop58) in callows. Similarly, top positive cor-
relations in no-care individuals also identified Ascosphaera as a
central fungus correlating with several developmental genes, but
primarily across the larval and pupal stages (Fig. 8b). Surprisingly,
instead of several strong correlations between Aspergillus and
developmental genes in no-care early larvae, Aspergillus only
correlated with a few genes involved with mitotic development
(i.e., FBXL7, ppan, and fam136a) in pupae, and the mitochondrial
enzyme IDH3B and the glycotransferase PIGM in early larvae.
Callows were the most different, with genes correlating with the
viruses Betacoronavirus and Nepovirus, and the protist Plasmo-
dium, reiterating previous results that a change in microbiome
composition is most notable at the callow stage.

Among the top negative correlations in cared individuals,
Paecilomyces was the top fungus with the most negative
correlations across all four developmental stages (Fig. 8c). Similar
to Paecilomyces, Fusarium also negatively correlated with several
genes across the four stages, whereas the remaining fungi
primarily correlated with only one or two developmental stages.
In contrast, Ascosphaera held the most negative correlations in
no-care offspring, with correlations to ribosomal and mitochon-
drial genes mainly in early larvae (Fig. 8d). All fungi negatively
correlated with genes from no-care early to pupal individuals,
whereas protists and viruses negatively correlated with develop-
mental genes primarily in no-care callows.

Discussion
This study characterized the regulation of gene expression and
the metatranscriptome of C. calcarata across development and in
the presence or absence of maternal care. The developmental
transcriptome reveals gene expression according to development

and maternal care, with a stronger baseline gene expression
profile attributed to development. We found that early and late
larval stages exhibit a diverse microbiome with fungi pre-
dominating. In the absence of maternal care, early larvae are most
susceptible to fungal and bacterial overabundance, whereas later
developmental stages have a much-reduced microbiome. Finally,
we found interesting correlations between fungal taxa and can-
didate bee developmental genes that are potentially involved with
immunity. To our knowledge, our study is the first to provide
metatranscriptomic insights into the relative role of maternal care
on offspring development and a foundational framework for the
developmental microbiome, a critical component of bee health.

Time course developmental gene expression of C. calcarata.
Genes encoding ribosomal protein subunits, nucleolar proteins,
and translation initiation TFs were found to be upregulated
during the early larval stage of C. calcarata. Ribosome genesis is
central to larval development in insects and has an important role
in early developing endoderm of zebrafish54,55. Ribosomal pro-
teins are essential during periods of cell proliferation and
development56. Additionally, kinesin-like protein-encoding genes
central to normal mitotic processes (KLP61F) are upregulated in
late larvae. The disruption of such genes has been shown to result
in larval lethality57.

Neurodevelopmental genes are upregulated in the pupal stage,
such as NLGN1, LRRC24, and cadN, which are central to synapse
function and cognition58–60. Additionally, the upregulated genes
include an essential TF (sox15), which is mainly expressed in
external sensory organs’ socket cells and has a role in the proper
electrophysiological function of Drosophila melanogaster’s
mechanosensory organs61. Tramtrack (Ttk), which is an important
transcriptional repressor for pupal Drosophila neurodevelopment
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and has a role in caste differentiation of ants, is upregulated in
pupal C. calcarata62,63. Overall, pupal gene expression found across
C. calcarata is mainly involved in neurodevelopment and
mechanosensation.

During the callow stage, there are several upregulated genes
involved in oxidative phosphorylation, including cox6a1 (cyto-
chrome c oxidase subunit 6A1) and NDUFA7 (NADH mitochon-
drial complex I dehydrogenase 1 alpha subcomplex subunit 7).
Flight muscles of D. melanogaster are rich in mitochondria64; the
upregulation of mitochondrial enzyme-encoding genes indicates
the essential role of wing development in newly emerged C.
calcarata callow. Overall, upregulated callow developmental genes
are mainly involved in wing muscle development.

Across all developmental stages, TF enrichment was most
often associated with the late larval stage and consisted mainly
of C2H2 zinc finger TFs. C2H2 zinc finger TFs are involved
with growth and play a role in stress response65, which may be
indicative of rapid development that occurs prior to pupation32

and a sensitivity to external stimuli as demonstrated by GO
enrichment of late larval motifs relating to signal transduction,
cell communication, and several physiological developmental
processes.

Pupae were enriched for ZNF610, which has a putative role in
DNA methylation66,67. Insect pupae are sensitive to external
stimuli (e.g., temperature), which can epigenetically alter gene
expression resulting in polyphenism. While DNA methylation
has been linked to caste differentiation in social bees (i.e.,
honeybee queens and workers), the lack of caste differentiation in
solitary bees suggests that DNA methylation plays a more
prominent role in the regulation of gene expression and
transcription68. Finally, the lack of TF enrichment in callows
compared to other developmental stages or between callow
maternal care groups advocates for similar, basic biological
processes that occur at the adult stage post-development.

Maternal care has the strongest effect on gene expression
during early larvae development. Our results indicate that
maternal care deprivation affects gene expression across the
development of C. calcarata, most significantly during early larval
development. In this stage, with the absence of maternal care,
upregulated genes encode trehalase, venom acid phosphatase
(acph-1), and venom allergen 3. Trehalase (which converts tre-
halose to glucose) is upregulated in the absence of maternal care,
as found in response to increased oxidative stress in mice69.
Additionally, venom acid phosphatase is a major allergen in Apis
mellifera and is a component of bee venom, which has a pro-
tective property in bees70,71. These results suggest that the
absence of mothers during early development is associated with
genes involved in mediating immune and oxidative stress
responses. Parental care has been shown to play an important role
in egg survivorship and early larval development in other insects
with facultative parental care. For instance, European earwig
mothers will increase their care load depending on pathogen
exposure within their nests, accordingly, such as returning to
nests more often for egg care72. In burying beetles (Nicrophorus
vespilloidesi), larval survivorship and growth rates were sig-
nificantly higher in the presence of parental care13.

On the other hand, among downregulated genes is eukaryotic
translation initiation factor 3 subunit E (eIF3-S6) and various
ribosomal protein subunits. These results indicate that maternal
care deprivation could be linked to downregulating genes
essential for translation initiation and potentially affect cell
proliferation and development. Additionally, no-care early larvae
were the only group+stage with DEGs enriched for a significant
motif that binds to a C2H2 zinc finger and a zipper-type TF, with

enriched roles in TF activity, brain, and eye development. While
we might expect stressed offspring to show term enrichment
directed to immunity, regulation of transcription activity is itself a
response to stress and serves as a defensive mechanism by
regulating several genes in order to maintain cellular integrity,
prioritize development, or changes in cellular behavior73.

Several other genes demonstrated changes in expression due to
maternal care, but a notable change in expression occurred in a
potassium voltage-gated channel protein (shab) which was
upregulated in no-care late larval samples. It has been shown to
be upregulated as a compensatory mechanism in response to loss
of Ca2+-dependent K+ channel conductance in D.
melanogaster74. It could be that shab upregulation is part of a
homeostatic mechanism because of maternal care deprivation.
Pupae reared without mothers had upregulated genes, such as
LRRC15, whose transcription has been shown to be enhanced in
response to neonicotinoids in honeybees75. There were also many
more significantly upregulated DEGs in no-care callows, which
include hexamerin, a gene found to be upregulated in the
leafhopper Circulifers haematoceps as part of an immune
response and bacterial infection controlling mechanism47.
Additionally, CAMKII is upregulated in no-care conditions;
upregulation of this gene is known to result in memory
impairment in Drosophila48.

RFC testing demonstrated that gene expression was highly
accurate in predicting the developmental stage of offspring when
compared to predicting the maternal care group, suggesting that
while mothers do play a role in gene regulation during early larval
development, the absence of mothers does not arrest the full
development of C. calcarata offspring.

Fungi pose a risk of developing early larvae without maternal
care. We expected a change in metatranscriptomic composition
across development and between maternal care groups, and we
observed a significant difference in taxa richness, specifically
between early and late larvae versus pupal stages. Interestingly, we
found that while transcriptomic data groups prepupae with late
larvae based on gene expression, microbiome composition shows
a greater similarity between prepupae and the pupal stages. This
difference is likely due to prepupal gene expression patterns most
similar to late larval stages as it is a pre-metamorphic state25,
however, defecation begins in prepupae32, and emptying of the
gut would result in a similar, decreased microbiome composition
in prepupae and in pupae.

Our RFC models showed that the metagenome is slightly better
at predicting the maternal care group rather than the develop-
mental stage for offspring, highlighting the importance of nest
cleaning and rebuilding of nest cell walls by mothers32 to keep
fungi and bacteria at a minimum. Studies have shown that
Ceratina nests without mothers had a greater percentage of
infested cells and greater brood mortality76.

The fungi Aspergillus consistently showed up as a highly
abundant and persistent genus in C. calcarata in the early larval
stages. Aspergillus was dominant in early larvae samples reared
without mothers, along with other plant-associated and poten-
tially pathogenic fungi such as Paecilomyces and Ascosphaera.
Aspergillus is associated with environmental diseases such as plant
molding and food rot77. The most well-known disease by
Aspergillus in bees is stonebrood disease, in which Aspergillus
flavus infects honeybee larvae causing mortality and
mummification78. Ascosphaera, a fungus that causes chalkbrood
disease in honey bees79, was also found overrepresented in no-
care early larvae. Although direct effects of Aspergillus or other
fungal pathogens on C. calcarata larval mortality remain to be
tested, Aspergillus is known to cause pollen spoilage and increased
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mortality in solitary ground-nesting Nomia alkali bees80 and
Diadasia chimney bees81, and the strain Ascosphaera proliperda
caused chalkbrood disease in Megachile leaf-cutting bees and
Osmia mason bees82. It is evident that Ceratina mothers actively
keep their brood cells clean to avoid the spread of fungal
pathogens and pollen spoilage32,76 and that this active cleaning
appears to be most important in the early developmental stages
(Fig. 6).

Key correlating genes with fungi. Integrative analyses revealed
that Ascosphaera and Paecilomyces consistently harbored the
most associations with host offspring gene expression across the
four developmental stages and between care groups. Ascosphaera
was the central fungus with the most positive correlations in both
care and no-care treatments, but interestingly there were many
more correlations between Ascosphaera and developmental genes
when mothers were present. This suggests that even in the pre-
sence of mothers, offspring are reacting to a fungal and highlights
the need for future studies to explore the pathogenic effects of
Ascosphaera on offspring survivorship in C. calcarata. In callows,
Ascosphaera correlated with pitchoune (pit), potentially involved
with ribosomal biogenesis and protein synthesis83, and in pupae
with isocitrate dehydrogenase IDH3B, involved with amino acid
metabolism84; these genes were not positively correlated with
Ascosphaera under no-care conditions. Although the effects of
Ascosphaera are unclear in solitary wild bees, it is known to infect
the later larval and pupal stages of honey bees by germinating in
their digestive tract and mummifying larvae and pupae85. We
speculate that Ascosphaera induces a stress response in C. cal-
carata in cared and no-cared larvae and pupae, leading to
increased energy production and mitotic and ribosomal devel-
opment to offset developmental stress. Conversely, Ascosphaera
positively correlated with the cellular respiratory gene UQCRFS1
in pupal stages in cared treatments, but a lack of mothers resulted
in the same correlation during the late larval stages. The
UQCRFS1 gene is involved with energy production, a process that
is often increased under stress conditions86, and this corroborates
the results found in honey bee larvae infected with Ascosphaera
apis, where energy metabolism was elevated87. Furthermore, in
no-care offspring, Ascosphaera negatively correlated with several
ribosomal developmental genes in the early larval stage. This
finding suggests that in a stressed environment, ribosomal bio-
genesis—which requires abundant energy metabolism - is
diminished. This might be due to increased energy expenditure in
other processes in no-care early larvae, such as the positive cor-
relation between Ascosphaera and RBKS, a gene involved with
carbohydrate metabolism. Indeed, bees feed on a carbohydrate
rich diet, and C. calcarata early larvae are known to feed con-
stantly on their pollen mass provision allowing them to develop
into pupae in little under a month32. Future functional work on
solitary bee offspring is needed to better understand how off-
spring respond genetically and physiologically when faced with
Ascosphaera infections, with or without maternal presence, as our
results suggest that certain fungi may be adept at surviving in
nests despite cleaning and guarding by mothers.

Paecilomyces is a fungus found in soil and decaying plant
material and produces secondary metabolites that can be toxic to
insects88. As such, the presence of Paecilomyces still induces a
stress response even in brood reared with mothers. For instance,
while Paecilomyces negatively correlated with Dscam2—which has
a role in neuronal development89 and immunity90—in no-care
late larvae, it also negatively correlated with Dscam2 in cared-for
late larvae, suggesting that irrespective of maternal care,
regulation of immunity genes in offspring are faced with a cost
due to fungal stressors. Additionally, Paecilomyces negatively

correlated with other neurodevelopmental genes in care and no-
care late larvae suggesting that neurodevelopment is deficient in
the presence of Paecilomyces and may lead to nervous system
dysfunction, as was found to occur in ghost moth larvae infected
with P. hepiali91. Future functional studies on fungal infections
during development will be necessary to fully understand how
these fungi impact non-apid bee survival and how maternal
presence may alleviate the stress of fungal stressors.

Whereas previous studies focused only on the effects of
maternal care in adult Ceratina gene expression21 or only on the
Ceratina developmental microbiome without maternal absence25,
our study uniquely analyzes the changes in gene expression
patterns and microbiome composition across developmental
stages in the presence and absence of maternal care. Arsenault
et al.21 found that the removal of mothers during the larval stage
resulted in more aggression and avoidance in adults as a result of
changes in gene expression patterns, with notable changes in
genes related to neuronal function and metabolism. Although we
did not explore behavior in our study, we found that maternal
care had the greatest impact during early larvae development with
the greatest number and magnitude of DEGs, also involved
primarily with neurodevelopment, but also involved ribosome
biogenesis. Microbiome analyses corroborated the finding that
maternal care plays an important role during early larvae
development, as fungal pathogens such as Aspergillus, had the
greatest abundance in the absence of maternal care, but was much
reduced in offspring with mothers present. This differs from
Nguyen et al.25, which did not find Aspergillus as a dominant
fungus in their Ceratina samples but did find other fungi to be
prominent, which were also found in high abundance in our
study, such as Ascosphaera and Penicillium. Machine learning
analyses of the full metatranscriptomic dataset found that gene
expression was better able to predict offspring developmental
stage than maternal care group, whereas the opposite was true for
microbial communities, reinforcing the utility of hologenomic
datasets to examine the relative roles of genes and environment.
Potential interdependence between host gene expression and
microbiome datasets highlights important interactions, such as
the fungi Ascosphaera and Paecilomyces, as prominent stressors
and the role of maternal care in maintaining development. This
study provides foundation developmental and microbiome
characterizations of a wild bee and network syntheses to develop
hologenomic insights into early childhood development and
health.

Methods
Brood rearing and sample collection. C. calcarata nests were
collected from sumac and raspberry stems in Toronto, Canada
(43.7735° N, 79.5019° W). Care and no-care treatments were
raised in the respective presence and absence of maternal care to
each of the 19 individual developmental stages based on Rehan
and Richards32 (Supplementary Data 2). Following the protocol
design in Arsenault et al.21, care and no-care offspring were
reared in the lab at 23 °C and 50% relative humidity to each of the
focal developmental stages before assay with and without the
presence of mothers, respectively. All samples were flash-frozen
in liquid nitrogen and stored in a −80 °C freezer.

RNA extractions, library construction, and sequencing. RNA
was extracted using Qiagen RNeasy mini kit from whole body
samples of five individuals from each stage in both care and no-
care treatments. In total, 190 samples of larvae, pupae, and adults
(from 140 nests) were sequenced in this study. For this experi-
ment, there were 95 care group samples and 95 no-care group
samples used. The pupae and adult samples used were all females.
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RNA samples were then sent to Genome Quebec for library
preparation using the TruSeq DNA PCR-free method and paired-
end sequencing using the Illumina NovaSeq 6000 platform. All
samples were sequenced to an average depth of approximately
33× coverage to 100 bp (Supplementary Data 3). The reads were
then aligned to the C. calcarata reference genome
(PRJNA791561) using STAR92. Adapter contamination was less
than 0.2% in reads and STAR accounts for poor quality ends of
reads during alignment.

Differential gene expression analysis. Normalized counts and
DEGs across developmental stages and between care and no-care
treatments were obtained using DESeq239,40. Heatmaps were
generated using pheatmap92,93 in R based on variance-stabilizing
transformed data from the DESeq2 package. PCA plots were
generated based on variance-stabilized transformed data. To
explore changes in gene expression for DEGs between care and
no-care groups, volcano plots were generated using Enhanced-
Volcano package94. As recommended in maSigPro user’s guide41,
EdgeR was used to obtain normalized library counts without any
CPM filtering in order to keep all genes for analysis95. To survey
gene expression over the developmental stages, these data were
then inputted into maSigPro to obtain generalized linear models
in which the adjusted p-value is less than 0.05. Additionally,
maSigPro uses a linear step-up Benjamini–Hochberg false dis-
covery rate procedure, in which the adjusted p-value is less than
0.0541,96. A higher regression model was used (degree= 18) to
account for the 19 individual developmental stages over time,
with a backward stepwise regression to identify gene profile dif-
ferences. Gene clusters obtained from maSigPro were used to
generate generalized linear plots, which allowed the 19 individual
developmental stages to be merged into four overall develop-
mental stages (early larvae, late larvae, pupae, and callows) that
will be used for further analysis (Supplementary Data 2, Figs. 2
and S1). The GO enrichment of the gene lists obtained using
DESeq2 and maSigPro were then functionally annotated using
TopGO with enriched terms identified by Fisher’s exact tests with
a p-value less than 0.0597.

Gene overrepresentation and cluster analysis. To identify key
co-occurring DEGs, normalized gene expression data for the
complete dataset (characterized by stage and maternal care
group) from DESeq2 was used for weighted gene co-expression
analysis (WGCNA) using the wgcna R package37,38. The samples
were clustered using the hclust distance method and using a soft
thresholding power of 6, module size of 50, and unsigned network
type, WGCNA analysis was conducted, and no outlier samples
were detected37,38 (Fig. S6A). In this study, we have focused on
the top three significant modules (based on the highest positive
correlation values and p < 0.05) for each stage and group. GO
enrichment for these genes was obtained as well. Genes were
classified as a hub gene in the module if the absolute gene sig-
nificance value (GS) was≥0.2 and absolute module membership
values (MM) were ≥0.9 according to cut-off values implemented
in previous studies utilizing WGCNA98,99; the MM cut-off was
increased to 0.9 from 0.8.

Taxonomic classification. Unmapped transcriptomic reads were
used to characterize the holobiome of each offspring and for the
taxonomic classification of microbial communities. First, metaS-
PADES (version 3.10.1), a package from the SPAdes toolkit49 was
used to obtain contigs from the reads. Contig assembly was done
for paired-end reads using default kmer settings (-k 21, 33, 55,
77). Contig files for 190 samples were produced, then BLASTed
using blastn100 (version 2.12.0) against the non-redundant

nucleotide nt database, setting parameters -max_target_seqs and
-max_hsps to 1 in order to extract only the top alignment hit for
each contig query. We removed contigs shorter than 200 bp and
contigs mapping to environmental bacterial contaminating gen-
era Sodalis or Wolbachia101 (3). Next, NCBI Entrez Direct
E-Utilities efetch (version 15.3) (https://www.ncbi.nlm.nih.gov/
books/NBK25499/) was used to extract full lineage information
for the remaining contigs (e.g., kingdom, phylum, class, order,
family, genus, species) based on the BLAST hit taxonomy ids (i.e.,
‘taxids’). Contigs were kept if they matched any one of the six
groups of interest at the genus level: arachnida, bacteria, fungi,
nematoda, protista, and viruses. Then, we further filtered the
contigs using a minimum relative abundance threshold of 0.1%
within a sample for each group of interest. Genera were con-
sidered top taxa for each category (i.e., developmental stage+
care group) if they were above 1% relative contig abundance for
that category.

Diversity analyses. We tested for significant differences in genus
dissimilarity and richness using Bray–Curtis dissimilarity and
Shannon-Wiener diversity indices, respectively. First, we used the
R package vegan102 to test Bray–Curtis dissimilarity on the
metatranscriptomic dataset, transformed using the total method
in DECOSTAND, to infer any significant differences across the
four developmental stages (early larvae, late larvae, pupal, callow).
PERMANOVA via the ADONIS2 method from vegans was used
to determine if the resulting dissimilarity was significant between
stages. To ensure PERMANOVA was not violated due to unequal
variation among groups, the BETADISPER method was used to
test for the significance of the PERMANOVA result; it is violated
if an ANOVA test on the BETADISPER result is significant. If
valid, Tukey’s Honest Significant Difference (HSD) via the
TUKEYHSD method was implemented to identify groups that
were significantly different from each other. Next, we ran
Shannon-Wiener to test for significant differences in alpha
diversity across all developmental stages. ANOVA via the AOV
method was used to determine the significance of alpha diversity,
followed by Tukey’s HSD to identify significantly different
groups. We also ran the Kruskal–Wallis test on Shannon–Wiener
alpha indices as a second non-parametric test to identify sig-
nificantly different groups. First, Bartlett’s test of variance using
the BARTLETT.TEST method was implemented to ensure var-
iance across samples was equal. If not significant, the
Kruskal–Wallis using the KRUSKAL.TEST method was applied.
If significant, Dunn’s test using DUNNTEST from the R package
FSA103 was used to identify significantly different groups. Next,
we ran the above analyses to test for significant differences in
dissimilarity and alpha diversity for each stage between maternal
care groups (e.g., care: early larvae vs. no-care: early larvae).
Finally, we ran a similarity percentage (SIMPER) using
Bray–Curtis dissimilarities in PAST50 (version 4.06) to identify
the top 10 taxa contributing to observed differences between
overall developmental stage, maternal care groups, and between
stage and maternal care groups.

Taxa overrepresentation and cluster analysis. We used an
NBDA from the R package DESeq2 to identify genera that were
significantly overabundant between care groups for each devel-
opmental stage (e.g., care: early larvae vs. no-care: early larvae), or
between developmental stages only (e.g., early larvae vs. late
larvae). This resulted in four comparisons for each stage and care
group and six comparisons between stages only; this totaled 20
comparisons. Prior to analysis, DESeq2 requires that there be at
least one variable with no zeros present in any of the samples.
Every taxon in our metatranscriptomic data had at least one zero
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abundance value in at least one sample. To circumvent this, a
pseudo taxon with a value of 1 across all 190 samples was added
to allow DESeq2 to properly run and normalize the dataset. Next,
the normalized dataset was used for WGCNA. Briefly, missing
data or zero-variance data are checked and/or removed;
this resulted in the removal of the pseudo taxon. Next, outlier
samples were removed if they were more than five standard
deviations from other samples via hierarchal clustering of sam-
ples; this resulted in the removal of three samples (J11-4, K11-2,
and H120-9); the remaining 187 samples we kept for further
analysis. Next, analysis was done on developmental stage
(e.g., early larvae) or developmental stage + maternal care group
(e.g., care: early larvae), which were one-hot coded to convert
categorical terms into binary code where 1 indicates a sample is
represented by the category and 0 indicating the sample is absent
from the category. A range of powers was tested, and a soft-
threshold power of 10 was selected, along with a network type set
as signed and a minimum module size of 20 (Fig. S6B). All
modules that had significant, positive correlations were recorded
and analyzed further for hub taxa based on absolute GS ≥ 0.2 and
absolute MM ≥ 0.8 using cut-offs obtained from studies98,99.

Random forest classification. The R package randomForest51

was used for random forest classification to test if gene expression
and metagenomic data can clearly predict the developmental
stage or maternal care group of offspring. For the metagenomic
data, we trained several random forest classifiers (RFCs), which
included the complete metatranscriptomic data (i.e., all six
domains), only the bacterial domain, only the fungal domain, and
a combined bacterial+fungal domain dataset, to predict either
overall developmental stage or care group, RFC testing was also
done on the normalized gene expression dataset. Prior to RFC on
gene expression (20,825 genes), we filtered out DEGs with 15 or
fewer counts, shrinking the data to 16,023 genes. The RFCs were
trained using 9 training set sizes (10–90%, increasing by 10%),
with each training set size run 10 times to obtain an average
classification accuracy. This resulted in 90 trials per RFC. Before
each RFC, we ran the TUNERF method to determine an optimal
mtry value (used to determine the number of features to select for
the RFC to minimize error) for 5000 runs (ntree= 5000). The R
package caret104 was used for the confusion matrix, which
summarizes the overall performance of the RFC. The R package
randomForestExplainer105 was used to determine the top 10
important features (i.e., taxa or genes) that influenced the RFC
model accuracy and was done for each trial run at the 80%
training set size. Results summarized and compared between
RFCs will focus on 80% of samples withheld.

TF enrichment. To identify candidate TF binding sites enriched
upstream of DEGs, we implemented STREME42 from the MEME
(Multiple Em for Motif-Elicitation) package (version 5.4.1) to find
significantly enriched motifs 5kbp upstream of all unique DEGs for
each stage, all upregulated DEGs for each stage comparison, all
unique DEGs for each maternal care group, and finally, for all
upregulated DEGs for each stage+ group using an E-value cut-off
of 0.05. Significant motifs from STREME were used in subsequent
MEME suite packages for motif identification and enrichment. We
used the TOMTOM106 webserver to identify matched motifs using
the JASPAR107 non-redundant core 2022 database for vertebrates
and insects separately using default settings. Then we implemented
GOMO108 (Gene Ontology for Candidate Motifs) to assess the
functional role of identified significant motifs using default settings.

Integration of gene expression and metatranscriptomic data.
Finally, to detect any patterns or associations between the

metagenome and host gene expression, we used the R package
mixOmics52,53 to integrate metagenomic abundance data with
gene expression data using sparse partial least squares (sPLS)
regression analysis. The sPLS function integrates two datasets
measured on the same individuals (e.g., host gene expression and
metatranscriptomic data) to detect highly correlated (positive or
negative) variables. We filtered the normalized host gene
expression data (20,825 genes) to include only DEGs that had a
log2foldC > 1. Next, we further filtered these DEGs to focus on
hub DEGs from WGCNA that had a GS value > 0.5. This resulted
in 32 top genes to be further cross-analyzed with metatran-
scriptomic data. Next, we filtered the metatranscriptomic genus
abundance data to focus only on the top contributors based on
SIMPER analyses. This totaled 11 genera. Then we split our fil-
tered gene expression and metatranscriptomic datasets into
samples for each developmental stage and group setting (e.g.,
care; early larvae). We performed sPLS on the filtered datasets for
each development and group setting using ncomp= 2 (for two
components), mode= regression (to fit a linear relationship
between the variables), and near.zero.var= FALSE (since our
filtered data is a small portion of the entire dataset and would
have fewer zeros throughout). Correlation matrices between
genes and taxa were obtained, and only the top 15 positive and
negative correlations were extracted for network visualization
using Cytoscape109 (version 3.9.1).

Statistics and reproducibility. This study examines tran-
scriptomic and metatranscriptomic sequence data extracted from
190 C. calcarata individuals reared with or without maternal pre-
sence from early larval to callow stages. For comparisons between
maternal presence and absence, in total, 95 individuals were reared
with mothers, and 95 individuals were reared without mothers. A
sample size of 5 individuals was used for each developmental stage
and maternal care group (5 replicates per individual stage and care
group), resulting in a total of 40 individuals reared for early larval
development, 50 reared for late larval development, 90 reared for
pupal development, and 10 reared to the callow stage. Methods for
RNA extraction, library preparation, and sequencing, mapping to
reference genome, extraction of transcriptomic and metatran-
scriptomic data, taxonomy classification, and TF enrichment are
explained in the methods section.

All statistical analyses were performed in R. Testing the
difference in Aspergillus abundance between care groups for early
larvae, and late larvae was done using a two-tailed t-test, with the
t.test function in R and var.equal set to TRUE. PERMANOVA for
Bray–Curtis dissimilarity beta diversity was performed, followed
by ANOVA for beta dispersion and Tukey HSD to determine
significantly different stages and care groups. ANOVA for
Shannon–Weiner alpha diversity estimates were also performed,
followed by post hoc Tukey HSD to identify significantly different
groups. In addition, Bartlett’s test was not significant on
Shannon–Wiener alpha indices, so the Kruskal–Wallis test was
used, followed by post hoc Dunn’s test to determine significantly
different groups. Data were deemed significant when P values
were less than 0.05.

Integration of gene expression and microbiome composition data
identified important positive and negative correlations between
genes and taxa for individuals reared with and without mothers
across the developmental stages, using correlations obtained from
the mixOmics R package, with details explained in Section
“Integration of gene expression and metatranscriptomic data.”

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05275-2 ARTICLE

COMMUNICATIONS BIOLOGY |           (2023) 6:904 | https://doi.org/10.1038/s42003-023-05275-2 |www.nature.com/commsbio 11

www.nature.com/commsbio
www.nature.com/commsbio


Data availability
Raw reads for RNA sequencing are available on the NCBI Sequence Read Archive under
BioProject PRJNA926970. Source data used to generate figures and results in this study
are available within the paper in Supplementary Data 1 file.

Code availability
The code used to obtain results is available upon request.
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