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Abstract

The evolution of eusociality requires that individuals forgo some or all their own reproduction to assist the reproduc
tion of others in their group, such as a primary egg-laying queen. A major open question is how genes and genetic 
pathways sculpt the evolution of eusociality, especially in rudimentary forms of sociality—those with smaller co
operative nests when compared with species such as honeybees that possess large societies. We lack comprehensive 
comparative studies examining shared patterns and processes across multiple social lineages. Here we examine the 
mechanisms of molecular convergence across two lineages of bees and wasps exhibiting such rudimentary societies. 
These societies consist of few individuals and their life histories range from facultative to obligately social. Using six 
species across four independent origins of sociality, we conduct a comparative meta-analysis of publicly available 
transcriptomes. Standard methods detected little similarity in patterns of differential gene expression in brain tran
scriptomes among reproductive and non-reproductive individuals across species. By contrast, both supervised ma
chine learning and consensus co-expression network approaches uncovered sets of genes with conserved 
expression patterns among reproductive and non-reproductive phenotypes across species. These sets overlap sub
stantially, and may comprise a shared genetic “toolkit” for sociality across the distantly related taxa of bees and 
wasps and independently evolved lineages of sociality. We also found many lineage-specific genes and co-expression 
modules associated with social phenotypes and possible signatures of shared life-history traits. These results reveal 
how taxon-specific molecular mechanisms complement a core toolkit of molecular processes in sculpting traits re
lated to the evolution of eusociality.
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Introduction
Sociality fascinated and flummoxed Darwin (Darwin 1859; 
Ratnieks et al. 2011)—how can evolution produce indivi
duals who sacrifice reproduction to promote the reproduc
tion of others? Inclusive fitness theory is widely invoked to 
delineate how altruistic, non-reproductive individuals can 
evolve by passing on their genes via relatives who are dedi
cated reproductives (Hamilton 1964; Bourke and Franks 
1995; West et al. 2015). In recent years, there has been a 
shift in focus to understand the proximate machinery by 
which the genome of a single species can give rise to the al
ternative social phenotypes—reproductives (queens) and 
non-reproductives (workers) (Strassmann et al. 1989; 
Bourke and Franks 1995; Crozier et al. 1996; Rittschof 
and Robinson 2016; Toth and Rehan 2017; Kapheim 
2018). It is remarkable that these same phenotypic solu
tions to social living have evolved at least eight times inde
pendently within the Hymenoptera (bees, wasps, and ants) 
(Hughes et al. 2008). Studies on the molecular basis of so
cial phenotypes in these insects have shown how over evo
lutionary time genotypes have been co-opted, adapted, 
evolved, and/or converged to produce alternative pheno
typic expressions of shared genomes (Evans and Wheeler 
2001; Hunt et al. 2013; Simola et al. 2013; Berens et al. 
2015; Toth and Rehan 2017; Weitekamp et al. 2017; 
Warner et al. 2019). Despite the multitude of data, our abil
ity to search for common or contrasting patterns of molecu
lar machinery across different datasets is limited by 
incompatibilities between datasets, arising from the rapidly 
changing methods in molecular biology; moreover, the in
fluence of ecology, life-history, lineage, and level of social 
complexity (Wilson 1971) have been largely overlooked.

Sociality pervades the tree of life in all shapes and sizes, 
from the emblematic social insects to the enigmatic slime 
molds. In many cases, the social group is temporary and 
ephemeral: group members retain autonomy and have 
the power to exercise different gene-propagation strat
egies as non-reproductives or reproductives and they can 
change what they do over time, depending on intrinsic or 
extrinsic factors. These traits describe rudimentary societies, 
and can be found amongst the Dictyostelium slime molds, 

Polistes paper wasps and some Ceratina small carpenter 
bees. Some may have the option to choose between the so
cial option and living alone; such as mongooses, halictid 
bees, and stenogastrine wasps. Other types of societies, 
less rudimentary, have become groups of specialists, with 
each unit component becoming committed to a specific re
productive or non-reproductive role, and being mutually 
dependent on each other; so complex are these societies 
that they constitute a major transition to a new level of in
dividuality in their own right (Szathmáry and Smith 1995). 
These complex societies are epitomized in Hymenoptera 
by honeybees, vespine wasps, most ants.

A comprehensive understanding of how altruists and 
their beneficiaries can arise from the same genome remains 
elusive, especially given the 200 Myr of Hymenoptera evo
lution into a large diversity of biological complexities, en
hanced by a proportioned research effort producing far 
more datasets from complex societies than simpler societies 
(Branstetter et al. 2018). Genomic and transcriptomic ana
lyses of reproductive and non-reproductive phenotypes 
(hereafter named social phenotypes) in Hymenoptera pro
vide emerging evidence for two overarching, but contrast
ing, patterns on the evolutionary nature of the machinery 
that makes social phenotypes. The most prominent pattern 
is that evolution appears to often co-opt the same aspects 
of the genome to generate social phenotypes, suggesting 
an important role for a so-called “genetic toolkit” for soci
ality (Toth and Robinson 2007). The toolkits include specific 
genes that are shared across species and differentially ex
pressed between social phenotypes; for example, genes re
lated to core metabolic and reproductive processes (e.g., 
the egg-yolk protein Vitellogenin (Amsalem et al. 2014; 
Morandin et al. 2019)), possible “master” regulatory genes 
(e.g., zinc finger transcription factor family [Rehan et al. 
2018]), and genes related to neural and sensory processing 
(e.g., neuroparsin-A-like [Qiu et al. 2018]). Signs of a toolkit 
for sociality are also evident at the functional level, with nu
merous studies uncovering shared gene pathways (Berens 
et al. 2015), networks (Patalano et al. 2015; Morandin 
et al. 2016), and molecular and cellular processes at the 
mRNA level between queen and worker social phenotypes 
(Wyatt et al. 2020; Shell and Rehan 2022). Genes 

Significance
Insects societies range from simplicity—as two totipotent females caring for few offspring, to complexity—as a commit
ted honeybee queen supported by thousands of partially sterile workers. Understanding how social behaviors are regu
lated in rudimentary forms of sociality is fundamental for uncovering the foundations of social evolution. Yet, we lack a 
standardized test of this across independent social lineages at the molecular level. Using a combination of machine 
learning and co-expression analyses applied in a standardized manner across multiple datasets, we uncover a core gen
etic toolkit for social behavior that is shared across a range of lineages. Our continuing quest to understand the emer
gence of rudimentary sociality must capture and account for the contributions of evolutionary history and life-history to 
the building blocks of social life.
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upregulated in reproductives may relate to epigenetic mod
ifications (Shell and Rehan 2019) or conserved functions 
such as transcription or biosynthetic processes associated 
with basic functions (Taylor et al. 2021). Along-side genetic 
toolkits for sociality are signs that evolution sometimes uses 
taxon-specific mechanisms that may have evolved de novo 
to produce alternative phenotypes (Sumner 2014). For 
example, genes that are evolutionarily younger (or taxo
nomically restricted to specific taxa), have been found to 
be frequently associated with caste-related gene expression 
(Johnson and Tsutsui 2011; Ferreira et al. 2013; Feldmeyer 
et al. 2014; Berens et al. 2015; Rehan and Toth 2015; Shell 
et al. 2021). Comparative sociogenomics across independ
ent lineages to date have compared across levels of social 
complexity, for example rudimentary Polistes societies ver
sus highly derived Apis mellifera societies (Patalano et al. 
2015) or within a single origin of sociality (Wyatt et al. 
2020; Shell et al. 2021). However, we have yet to under
stand the extent to which there are shared patterns asso
ciated with social phenotypes in rudimentary societies of 
bees and wasps, using comparable methods of analyses. 
This information is critical to develop a comprehensive 
mechanistic scenario, on a molecular level, of how eusoci
ality can evolve.

Here, we conducted a meta-analysis of existing transcrip
tomic data for social phenotypes from six species of bees and 
wasps, representing independent origins of rudimentary 
forms of sociality, thus providing a much-needed standar
dized cross-species assessment of the molecular basis 
of alternative social phenotypes (reproductives and non- 
reproductives). We focus our efforts on species exhibiting 
rudimentary societies—including both facultatively and 
obligately social species; thus, they vary in level of social com
plexity, but they all share the trait of alternative female social 
phenotypes (or rudimentary “castes”) which exploit differ
ent reproductive roles. These types of societies are likely to 
be the most informative for understanding how altruism 
might emerge when social groups first form from a solitary 
ancestor; although these species do not necessarily re
present the first societies to evolve, their phylogenetic place
ment and life history traits make them a useful proxy among 
extant species (Rehan and Toth 2015). Comparisons of brain 
transcriptomic data for these six species, therefore, allow us 
to test the extent to which a conserved genetic toolkit may 
be related to the evolution of altruism in bees and wasps 
(Hypothesis 1: reproductive phenotype). Support for the 
toolkit hypothesis predicts significant similarity in expression 
across all six species at the gene and/or gene module level, 
specifically for some of deeply conserved genes and path
ways related to reproduction and regulation of core forms 
of behavior (Amsalem et al. 2014; Qiu et al. 2018; Rehan 
et al. 2018; Morandin et al. 2019).

Our six species also represent four independent origins 
of sociality—two in the bees (∼100 Ma between 

Megalopta genalis and Ceratina spp. [Peters et al. 2017]) 
and two in the wasps (∼166 Ma between Liostenogaster 
flavolineata and Polistes spp. [Huang et al. 2019]) (fig. 1). 
We include congeners in each group; these permit testing 
of how social lineage and phylogenetic relatedness influ
ences the degree to which molecular processes are shared. 
Given the possible importance of taxonomically restricted 
genes in caste determination, we predict that patterns of 
gene expression in more closely related species (e.g., conge
ners; family, or social lineage) may more closely mirror each 
other than those with more distant evolutionary relationships 
(Hypothesis 2: phylogenetic clade). Accordingly, these six spe
cies offer the opportunity for a rigorous test of the extent to 
which there is a shared set of proximate molecular processes 
regulating altruistic behaviors, taking account of the level of 
phenotypic specialism and commitment shown by altruists, 
and account of lineage, ecology, and life history (fig. 1, 
supplementary Table S2, Supplementary Material online).

Results
Using publicly available datasets, we compared head or 
brain transcriptomes of reproductives and non- 
reproductive phenotypes from each of the following six 
species: the halictid bee M. genalis (Jones et al. 2017), 
the xylocopine bees Ceratina australensis (Rehan et al. 
2018), and Ceratina calcarata (Shell and Rehan 2019), the 
stenogastrine wasp L. flavolineata (Taylor et al. 2022), 
and the polistine wasps Polistes canadensis (Patalano 
et al. 2015) and Polistes dominula (Taylor et al. 2021) (sam
pling details in supplementary Table S4, Supplementary 
Material online). The quality and completeness of the 
mapped RNAseq reads are comparable across the six spe
cies, despite variation in the level of replication across the 
species (n = 6–24 RNAseq samples per species, 
supplementary Table S5, Supplementary Material online). 
We identified 3,718 nearly single-copy orthologs across 
the two clades (supplementary Table S6, Supplementary 
Material online). Within clades we identified 5,787 nearly 
single-copy orthologs across the three bee species, and 
6,983 across the three wasps. All subsequent analyses fo
cused on orthologous gene sets, unless named otherwise 
as species-specific.

Overall Patterns of Gene Expression Cluster by 
Phylogeny Rather Than by Social Phenotype

To first examine whether overall brain gene expression clus
ters more by phylogeny than by reproductive phenotype 
(Hypothesis 1), we performed a Principal Component 
Analysis (PCA) on the species-aware Variance-Stabilized 
Transformed (VST—see Methods) raw RNAseq counts for 
the 3,718 nearly single-copy orthogroups identified across 
all six species. We identified 81 principal components, and 

Core Genetic Toolkit for Reproductive Division of Labour in Rudimentary Insect Societies                                                  GBE

Genome Biol. Evol. 15(1) https://doi.org/10.1093/gbe/evac174 Advance Access publication 17 December 2022                                3

D
ow

nloaded from
 https://academ

ic.oup.com
/gbe/article/15/1/evac174/6926469 by guest on 01 February 2023

http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
http://academic.oup.com/gbe/article-lookup/doi/10.1093/gbe/evac174#supplementary-data
https://doi.org/10.1093/gbe/evac174


the first five principal components explained 96.88% of the 
variance in gene expression.

We tested whether these PCs were significantly 
associated with phylogenetic clade or with reproductive 
phenotype. We found that across the first five principal 
components, phylogeny at the clade- and species-levels 

was significantly correlated with gene expression, account
ing for 96.9% and 61.2% of the total variance in gene ex
pression, respectively (fig. 2A and 2B). We also found PC9 
and PC10 to be significantly correlated with reproductive 
phenotype (fig. 2B and 2C ). PC9 was negatively correlated 
with the reproductive phenotypes (r = −0.44, P < 0.001), 

FIG. 1.—Phylogeny with four independent origins of sociality (circles) for bees (Halictidae & Apidae) and wasps (Vespidae: Polistinae & Stenogastrinae) 
representing a range of social and ecological phenotypes (traits in table on the right). Additional behavioral and phenotypic information on each species 
can be found in supplementary Tables S1 and S2, Supplementary Material online.

FIG. 2.—PCA shows that gene expression clusters by phylogeny rather than by reproductive phenotype.
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whereas PC10 was positively correlated with the reproduct
ive phenotypes (r = 0.37, P < 0.001). However, these princi
pal components only explained 0.30% the total variance. 
This suggests that while there may be a detectable repro
ductive phenotype-biased pattern of gene expression com
mon to these species, the pattern is less robust than the 
effect of phylogenetic clade and may pertain to only a small 
fraction of genes in the transcriptome. When the first two 
principal components for the transformed expression values 
for each species were plotted, we found some species have 
more distinct expression patterns (e.g., Ce. australensis) than 
other species (e.g., Polistes canadensis) (supplementary fig. 
S1, Supplementary Material online). We find that the percent 
of variation in gene expression is explained predominantly by 
phylogeny, supporting Hypothesis 2. Given the limitations of 
PCA, namely the variables supported by the first PCs not 
being related to the phenotypes, we next took a three- 
pronged analytical approach to independently assess the 
strength of shared patterns of gene expression by clade 
and by reproductive phenotype, described below. This ap
proach included gene differential expression (DE) analyses, 
a Support Vector Machine (SVM) machine learning method, 
and a weighted gene co-expression analysis (WGCNA).

All three panels use the 3,718 nearly single-copy ortho
logs across the six species. Species-aware VST RNAseq 
counts (which serve to normalize the data across species 
making them comparable) were used to find the principal 
components. (A) The first (PC1) and second (PC2) principal 
components, which cumulatively explain 51.67% of vari
ance in gene expression. Gene expression clusters tightly 
by species but not necessarily by clade (bee vs. wasp). 
Polygons have been drawn around the two phenotypes in 
each species to show the lack of overlap. (B) The eigenvalue 
correlations of the principal components with respect to 
clade, species, and reproductive phenotypes were calcu
lated using a Pearson correlation coefficient. Shown are 
the correlations for the top ten PCs. Color shading indicates 
the strength of the correlation, and asterisks indicate level 
of significance after Benjamini–Hochberg (Benjamini and 
Hochberg 1995) correction with *P < 0.05, **P < 0.01, 
and ***P < 0.001. (C) PC9 and P10 were significantly cor
related with reproductive phenotype. The points represent 
the individual RNAseq samples of the six species (n = 81 to
tal) separated by phenotype. PC9 was negatively correlated 
with reproductive phenotype, whereas PC10 was positively 
correlated. Note that the clustering of the genes in those 
principal components overlap. Polygons are drawn around 
the clouds of points to show the degree of overlap.

Genes with Large Fold-change Expression Differences do 
not Identify Social Phenotype-biased Patterns

Previous analyses of each species’ dataset had revealed ex
pression differences between reproductives and non- 

reproductives (Patalano et al. 2015; Jones et al. 2017; 
Rehan et al. 2018; Shell and Rehan 2019; Taylor et al. 
2021). We took a two-pronged approach where we first 
looked for common differentially expressed (DE) genes be
tween reproductive and non-reproductive phenotypes 
across the six species of bees and wasps, restricting our ana
lysis to the 3,718 nearly single-copy orthologs. We found 
197 orthologs that overlapped among two or more of the 
six species after controlling for species-specific expression 
variance (supplementary Table S19, Supplementary 
Material online). Notably, there were no DE orthologs 
found common to all six species (maximum four species). 
Our second approach intended to assess whether there 
were any functional annotations common across the six 
species, thereby not restricting our analysis to orthologs. 
We found no overlap in gene function across all six species 
(supplementary Table S19, Supplementary Material online). 
Given that DE gene analyses does not provide higher levels 
of gene associations, such as regulatory network and co- 
expressed gene networks, we then tested our hypotheses 
using analyses measuring subtle changes in gene expres
sion (SVM) and gene network analyses (WGCNA).

SVM Identifies Correlated Sets of Genes that Predict 
Social Phenotype Across all Species

Using a leave-one-species-out SVM Learning approach, we 
identified a different set of 127 genes with consistent 
shared patterns of DE among the social phenotypes of all 
six species of bees and wasps (fig. 3A, supplementary 
Tables S7–S9, Supplementary Material online). SVM rank 
of each gene (i.e., how strongly an orthogroup predicts re
productive phenotype) did not cluster species according to 
lineage (fig. 3B).

Instead, each species is unique in its prediction strength 
of gene expression, and branches off on its own in the hier
archical clustering, except for the two Ceratina bee species 
(sister taxa in fig. 3B). This could reflect the noise from all 
3,718 genes, thus we focused next only on the predictor 
orthogroups.

Gene ontology (GO) terms associated with these 127 
orthogroups included histone H3-K27 methylation 
(GO:0070734), sensory organ precursor cell fate determin
ation (GO:0016360) and hormone biosynthetic process 
(GO:0042446) (supplementary Table S8, Supplementary 
Material online), although none were significantly enriched 
(Benjamini and Hochberg 1995). BLAST comparisons of 
predictor genes against protein sequences from honeybee, 
A. mellifera, revealed high similarity scores to the histone 
demethylase UTY, the Vitellogenin precursor gene, and a 
zinc finger transcription factor (supplementary Table S9A, 
Supplementary Material online). We found no significant 
over-representation of transcription factors among the pre
dictor genes. Overall, the SVM results suggest the presence 
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of a shared genetic toolkit, albeit consisting of a small (3%) 
number of genes (Hypothesis 1: reproductive phenotype).

We additionally explored lineage-specific SVMs to test 
if closely related species presented similar patterns 
(Hypothesis 2a: phylogenetic clade; i.e., among bees-only 
and among wasps-only data, supplementary Table S7, 
Supplementary Material online). Given the structural smal
ler training datasets due to the inherent number of samples 
in each lineage, we expect to find less predicting genes than 
in our whole analysis. We found 56 predictor genes com
mon to all three species of bees (18% overlap with 127 
SVM predictor genes), including Krueppel-like protein, 
and 148 predictor genes common to all three species of 
wasps (52% overlap with 127 SVM predictor genes), in
cluding zinc finger family genes (supplementary Tables 
S10 and S11, Supplementary Material online, respectively). 
Enriched GO terms included regulation of cell fate specifi
cation (GO:0042659), sex differentiation (GO:0007548) 

for bees; and chromatin organization involved in regulation 
of transcription (GO:0034401), regulation of cell fate speci
fication (GO:0042659) for wasps (supplementary Tables 
S10 and S11, Supplementary Material online, respectively), 
although none were significantly enriched based on 5% 
False Discovery Rate.

Gene Network Analyses Identify Common Modules of 
Genes that are Associated With Social Phenotype

To test whether patterns of co-expressed genes are con
served across our six species of bees and wasps 
(Hypothesis 1) or within each clade (Hypothesis 2), we con
structed a multispecies co-expression network combining 
the data from all species and social phenotypes. We looked 
for the presence of a conserved network and determined 
whether modules within this bee + wasp gene network 
are significantly associated with social phenotype.

FIG. 3.—Reproductive phenotype is predicted by species-specific orthologous gene sets, including 127 genes that comprise a toolkit for rudimentary so
cieties across all six species A) Overlapping analysis of leave-one-out SVM results, after testing one species on a training set made of the five other species. In the 
upper part, the bar plot shows the frequency of orthogroups (n = 3,718) that are significantly predicting phenotypes (reproductives vs. non-reproductives) in 
selected overlapping sets of leave-one-out SVM results. In the lower part, the relationship matrix shows filled circles for the species (top rows: wasps; bottom 
rows: bees) sharing predictor genes sets (columns). For instance, 127 orthogroups are common predictor genes to all six species (left bar), and a total of 299 are 
common predictor genes to at least five species (total of the first seven bars on the left). B) Orthogroup ranking in each SVM analysis clustered by Euclidean 
distances of 3,718 orthogroups (in rows) and six species (in columns). The darker the shade, the more important this orthogroup is in predicting phenotype 
(i.e., higher rank). The darker section in the vertical column on the left indicates the 127 orthogroups that are significantly predictor of phenotypes and com
mon to all species.
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We found a conserved network across all six species 
and within clade (fig. 4A, supplementary Table S12A, 
Supplementary Material online). Using a minimum module 
size of 30 for bees + wasps combined, we found five consen
sus modules across the nearly single-copy orthogroups that 
contain a mean of 182 (ranging from 105 to 342) genes 
per module and mean connectivity (kME) of 0.0044 
(±0.0747 SD). Of the five consensus modules identified for 
bees + wasps, one module (blue) was significantly associated 
with reproductive phenotype (supplementary Table S13, 
Supplementary Material online). Of the 568 genes in blue 

module, 137 were independently significantly associated 
with reproductive and non-reproductive phenotype 
(meta-analysis of trait association, (Langfelder and Horvath 
2008) supplementary Table S13, Supplementary Material
online). We further ascertained that these 137 genes signifi
cantly associated with the consensus modules were not a re
sult of random chance by employing a resampling approach 
(P = 0.001, supplementary Table S13, Supplementary 
Material online, see also Supplemental Methods & Results). 
This suggests that the significantly trait-associated orthologs 
identified in consensus modules are robust, as they did not 

FIG. 4.—Comparing the datasets: consensus network of gene expression from reproductive and non-reproductive females’ brains in six species of bees+ 
wasps, using nearly single-copy orthogroups. Top Panel A: Modules with a minimum module size of 30 genes and after relaxing to a minimum module size of 
10 are shown relative to the dendrogram of 1,507 orthogroups across bees +wasps with sufficient expression for analysis. Trait-Associated (WGCNA) Panel B: 
Heatmap showing genes that are significantly phenotype-associated with reproductives (pink) and non-reproductives (green) for each species. Color strength 
is determined by correlation coefficient. Differentially expressed (DeSeq2) Panel C: Heatmap showing genes with DE in reproductives or non-reproductives for 
each bee (blue) and each wasp (orange) species. SVM Predictor Genes Panel D: The presence of the 127 genes identified by SVM as predictors of social pheno
type is shown as black bars.
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meet null expectations (supplementary Table S13A-C, 
Supplementary Material online).

We additionally conducted a deeper WGCNA analysis by 
lowering the module size (i.e., the threshold number of genes 
included in a given module), effectively focusing on smaller co- 
expression signals which are more likely to describe the evolu
tionary mechanisms across lineages and origins of sociality 
(Warner et al. 2019). We employed a novel iterative relaxation 
by steps of module size = 10 to allow for smaller modules 
of co-expressed genes containing overall more genes 
(Supplemental Methods, Supplementary Material online). At 
the smallest module size of 10, we found 39 modules 
with a mean size of N = 31 genes (ranging from 12 to 104 
genes) and a mean connectivity of 0.0061 (±0.08 SD, 
supplementary Table S13A, Supplementary Material online), 
including 12 modules significantly associated with reproduct
ive phenotype for a total of 1,468 genes. These phenotype- 
associated genes were significantly enriched for GO 
terms associated with chromatin such as regulation of chro
matin assembly or disassembly (GO:0001672), RSC-type 
complex (GO:0016586), brahma complex (GO:0035060) 
(supplementary Table S14, Supplementary Material online). 
Interestingly, one of the orthogroups in the significant mod
ules contributes to the top 10% loadings of PC9 and PC10 
(fig. 2C), with a sequence similar to Drosophila melanogaster’s 
small bristles gene associated with binding activity. In sum
mary, we found multiple genes—notably chromatin regula
tion—under a common co-expression pattern associated 
with social phenotypes across bee and wasp lineages.

Comparing Methods Provides Robust Evidence of 
Shared Genetic Toolkit at the Functional Level

We compared the sets of phenotype-informative genes 
identified across the three methods of analyses (fig. 4: 

WGCNA (panel A & B); DESeq (panel C) and SVM (Panel 
D) to assess level of overlap and assemble a robust list of pu
tative toolkit genes for sociality. Of these, 17 (13.4%) DEGs 
overlapped with the significant phenotype-associated 
genes from consensus WGCNA and only three (2.4%) over
lapped with the 127 SVM predictor genes (supplementary 
Table S17, Supplementary Material online). Only two genes 
overlapped among all three methods: these were an 
orthogroup nearly matching a chitin deacetylase isoform 
in Apis laboriosa (OG0000706, BLAST nr, 99.4% identity) 
involved in molting and pupation in insects (Li et al. 
2021), and an uncharacterized protein in honeybee 
(OG0001935, supplementary Table S9, Supplementary 
Material online). Given the small gene overlap across all 
three methods, we narrowed our gene set to the overall be
tween SVM and WGCNA results.

There are 71 orthologous genes identified as significantly 
associated with reproductive status across all six species (fig. 
4, supplementary Table S13, Supplementary Material on
line), present in both the SVM predictor gene set (out of 
127 genes) and the consensus WGCNA (out of 1,468 genes 
in size-10 modules). We propose this shared gene set as a 
putative genetic “toolkit” for rudimentary sociality in bees 
and wasps. GO terms in the genetic toolkit include imaginal 
disc-derived wing margin morphogenesis (GO:0008587), 
sensory organ boundary specification (GO:0008052), neuro
genesis (GO:0008052). The sequences in the genetic toolkit 
match honey bee annotated proteins: zinc finger protein 
ubi-d4 A isoform X1 (XP_395098.4), early growth response 
protein 1 (XP_006560759.1, also upregulated in bee for
aging (Singh et al. 2018)), and an isoform of tankyrase 
(XP_026301139.1) involved in telomere length regulation 
(Bonasio et al. 2012) (supplementary Table S21, 
Supplementary Material online). We also looked at the 
UniProt functions of those 71 genes; notably four categories 

Table 1 
Functions of the Core Genetic Toolkit Genes as Identified by GO Analyses

Number of 
Toolkit Genes

Summary of Functions Notable examples and overlap with prior studies

7 Chromatin binding AT-rich interactive domain-containing protein 2 isoform: Differentially expressed between 
nurses and foragers in B. terrestris and stingless T. angustula (Araujo and Arias 2021)

9 DNA binding early growth response protein 1: Upregulated in honeybee foraging (Singh et al. 2018)
1 Regulation of telomere length tankyrase isoform: Conserved differentially methylated gene between queens and workers 

in the ants Ca. floridanus and H. saltator (Bonasio et al. 2012)
1 Delivery of cellular proteins 

responding to a signal
thyroid receptor-interacting protein 11 isoform: Differentially methylated gene between 

honeybee castes (Wang et al. 2020)
12 Cellular functions Examples: transport of ion (sodium channel protein 60E isoform X1), lipid (nose resistant to 

fluoxetine protein 6 isoform X2), protein (exportin-7 isoform); carbohydrate and glucose 
metabolic processes (beta-galactosidase)

3 Developmental processes Examples: anatomical structure morphogenesis (carboxypeptidase M isoform), regulation 
of developmental processes (ubiquitin carboxyl-terminal hydrolase 34)

19 Basic processes Non-exhaustive list: Protein modification (kelch-like protein diablo); RNA binding (poly(A) 
RNA polymerase gld-2 homolog A isoform); Cell cycle (tetratricopeptide repeat protein 
28 isoform); Uncharacterized proteins (n = 12)
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that have been previously associated with caste differenti
ation in social insects: chromatin binding (de Araujo and 
Arias 2021), DNA binding (Singh et al. 2018), telomere 
length regulation (Bonasio et al. 2012), and signal-based 
protein delivery (Wang et al. 2020) (Table 1 and 
supplementary Table S21, Supplementary Material online).

We further conducted a semantic similarity search of the 
enriched GO Terms that were overlapping between the 
genes identified using WGCNA and SVM, using Revigo’s 
semantic similarity index (Supek et al. 2011). Shared GO 
terms were related to chromatin, such as supramolecular fi
ber organization; telomeres, such as nucleotide catabolic 
process; and caste differentiation, such as cell fate deter
mination (fig. 5).

Revigo Semantic-similarity-based multidimensional scal
ing of Biological Processes enriched GO Terms common to 
consensus WGCNA and species-normalized SVM. Each 
point represents a GO Term with a dispensability score be
low 0.15. The darker the point is, the more semantically un
ique the GO term is. A larger point represents a GO Term 
common to a large number of genes in the shared genetic 
toolkit.

Summary description of the genes that are common to 
the SVM predictor list and to the WGCNA modules asso
ciated with reproductive status (52 are characterized, 19 
are uncharacterized; see full report in supplementary 
Table S21, Supplementary Material online).

Discussion
Deciphering the building blocks of social behaviors in the 
rudimentary societies offers novel insights into the proxim
ate and ultimate processes of social evolution (Berens et al. 
2015; West et al. 2015). Despite enormous interest in the 
behavior, ecology and evolution of bees and wasps that ex
hibit such rudimentary styles of sociality (Patalano et al. 
2015; Shell et al. 2021), data on their lives in molecular 
terms have been sorely lacking. The last few years have 
seen some redress to this, but comparisons across datasets 
have proved challenging and limited largely to comparisons 
of gene lists (Kapheim et al. 2020; de Araujo and Arias 
2021; Korb et al. 2021). The current study sought to 
move beyond this, to conduct a controlled, comparative 
meta-analysis of six species with rudimentary sociality, 
spanning multiple taxonomic lineages (bees and wasps) 
and origins of sociality. Using a combination of several ana
lytical approaches, this study presents the most compre
hensive and robust test to date of the contributions of 
shared molecular mechanisms to shaping social pheno
types in the early stages of social evolution.

Previous analyses were limited to post-hoc comparisons 
of gene lists derived from datasets that have been analysed 
using different pipelines and methods. However, such 
comparative studies also present several challenges. 

Comparisons between datasets are rarely quantitative 
meta-analyses where collated data from different studies 
are reprocessed and reanalyzed in a standardized manner. 
This is especially important for transcriptomic datasets as 
sequencing methodologies have changed substantially 
over the last few years (Todd et al. 2016); the quality 
(e.g., coverage), type of data (e.g., length of reads) and tis
sue type (e.g., brain vs. whole head or body) may influence 
the robustness of the comparisons being made. Even more 
challenging is that the integrity of bioinformatic methods 
has changed greatly over time, from upstream pipelines 
that deal with the raw sequencing data, assembly programs 
and annotation databases, to down-stream computational 
methods that compare levels of gene expression, functional 
enrichment and how genes relate in networks.

Our analysis utilized transcriptomic datasets of three 
wasp and three bee species, displaying a variety of rudi
mentary forms of social organization, but all characterized 
by being comprised a small number of non-reproductive 
adults nesting with one reproductive. In addition to trad
itional analyses (differentially expression), we employed 
co-expressed gene network and unsupervised statistical 
machine learning methods (SVM), and successfully unveil 
a common set of genes and molecular functions for this 
cluster of species at the emergence of social group living. 
We found that traditional methods (using statistical cut- 
offs of significance based on DE) failed to identify cross- 
species similarities; this suggests a more nuanced and 
sensitive approach is needed to identify gene expression 
similarities across such a wide evolutionary distance. The 
application of machine learning methods is relatively 
new to analyses of non-medical genomic data (Wyatt 
et al 2020; Taylor et al 2021); using SVMs we were able 
to identify a set of 127 genes that consistently performed 
well in the classification of social phenotypes from their 
gene expression across all six species. A comparison of 
this trio of analytical methods allowed us to identify a con
served set of genes related to reproductive and non- 
reproductive social phenotypes in rudimentary societies 
across lineages and life histories. This represents a putative 
shared genetic toolkit for the early stages in the evolution 
of a reproductive division of labor—a hallmark of 
eusociality.

Social phenotypes were not the only factor explaining 
patterns of brain transcription: we found a strong phylo
genetic signal, whereby each bee and wasp lineage showed 
taxon-specific patterns of brain gene expression. In fact, the 
primary factor clustering differentially expressed genes 
among our samples was taxonomic group (fig. 2). This is 
not surprising given that these species represent 200 Myr 
of divergence, and various degrees and forms of social or
ganization across species (fig. 1); although, some of these 
patterns could be due to differences in diet as bees are pol
len collectors whilst wasps are predators. The impact of 
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lineage-specific selection pressures, associated with both 
independent evolution of social organization and emergence 
of novel genes, has previously been highlighted in compara
tive transcriptomics analyses between Hymenoptera lineages 
(Berens et al. 2015; Warner et al. 2019; Kapheim et al. 2020).

The genetic toolkit empirical hypothesis for the evolution 
of sociality posits there is an evolutionarily conserved 
mechanistic trajectory to social organization across taxa 
and social origins. It predicts deeply conserved common in
dividual genes, or shared co-expressed gene network mod
ules to be found as differentially expressed in convergent 
social forms across taxa. The null hypothesis proposes no 
detectable similarity in the expression of genes or modules 
related to alternative social phenotypes shared across rudi
mentary social species. The core set of genes differentially 
expressed between alternative social phenotypes we iden
tified here through multiple methods suggest that there 
may be similar molecular functional changes across rudi
mentary social insect societies. We identified conserved 
functions in chromatin binding, which has been observed 
differentially expressed between nurses and foragers 
in the eusocial bees Bombus terrestris and stingless 
Tetragonisca angustula (Araujo and Arias 2021) (Table 1). 
We also identified conserved functions in DNA binding, 
which is upregulated in honeybee foragers (Singh et al. 
2018), and regulation of telomere length, which has been 
shown to be differentially methylated between queens 

and workers in ants Camponotus floridanus and 
Harpegnathos saltator (Bonasio et al. 2012). Lastly, we 
see genes related to reproduction (e.g., yolk protein vitello
genin) and gene functions related to metabolism (e.g., 
carbohydrate and lipid metabolism), which have been con
sistently implicated as key players in a conserved genetic 
toolkit for sociality (Toth and Robinson 2007; Amsalem 
et al. 2014; Berens et al. 2015; Morandin et al. 2019). 
These results—71 core genes—are within the same range 
as other studies on conserved expressed genes between: 
ant slave-making species and host species (n = 62 genes 
shared across 162 Ma of divergence [Feldmeyer et al. 
2022]); animal behavior after social challenge (n = 6 genes 
shared across 680 Ma of divergence [Saul et al. 2019]). 
Overall, the emerging picture from our and these studies 
is that there are conserved gene modules recruited during 
eusocial evolution for the regulation of convergent social 
traits (e.g., castes), but few genes are individually predictive 
of a given trait. The involvement of suites of interacting 
gene modules is not unexpected, given the complexity of 
social traits (i.e., castes involve coordinated suites of behav
ioral, physiological, and developmental differences). Thus, 
unlike the classic evo-devo toolkit, the molecular toolkit 
for insect sociality may be more “loosely” structured 
around gene modules and functions, and thus detectable 
with more nuanced approaches such as the machine learn
ing approach used here.

FIG. 5.—Semantic similarity of GO Terms from genes in the shared genetic toolkit.
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To conclude, this study used a robust multi-pronged 
meta-analysis, to identify a core set of genes that are con
sistently associated with the social phenotypes typical of ru
dimentary group living in the Hymenoptera. These are a 
putative genetic toolkit for the early stages of social evolu
tion, laying the foundations for the emergence of a key hall
mark of eusociality—a reproductive division of labor. This 
toolkit has been hypothesized to form the mechanistic basis 
upon which more derived forms of eusociality may have 
arisen through evolution (Toth and Rehan 2017; Wyatt 
et al. 2020). We encourage adoption of such multi- 
pronged analytical approaches in future studies that 
include more origins of sociality, a wider range of forms 
of social living, and across larger genomic datasets. Such 
studies will allow us to understand whether the genetic 
toolkit uncovered here is also related to the elaboration 
of sociality and the development of superorganismality.

Materials and Methods

Datasets

Datasets and phenotypic comparisons for the three bee 
species (Ce. australensis, Ce. calcarata, M. genalis) and 
three wasp species (Polistes canadensis, P. dominula, 
L. flavolineata) are given in supplementary Table S2, 
Supplementary Material online. RNAseq raw reads were 
downloaded from NCBI (supplementary Table S3, 
Supplementary Material online). For the reproductive and 
non-reproductive phenotypes, sample sizes ranged from 
three to 12 individual whole-brains (except for Ce. calcara
ta, which were individual whole heads). Raw read depth per 
sample ranged from 17,453,576 to 96,115,726 (mean 
32,514,855.6 ± 13,571,313.98 SD) (supplementary 
Table S2, Supplementary Material online). All scripts are 
available on GitHub: https://github.com/EmelineFavreau/ 
MajorTransitionScripts/tree/master/comparative- 
transcriptomics.

Orthogroup Identification

Prior to orthogroup identification, we assessed completeness 
of the predicted genes and longest-isoform protein sequences 
for each of the six species with BUSCO using the Arthropoda 
and Hymenoptera lineage reference datasets, respectively 
(supplementary Tables S2 and 3, Supplementary Material on
line) (Simão et al. 2015). We then obtained orthologous gene 
sets using OrthoFinder v. 2.4.0 (Emms and Kelly 2019) using 
A. mellifera (honeybee) as an outgroup. Because bees and 
wasps diverged nearly 200 Ma (Peters et al. 2017), and diver
gence times within the bees and wasps are 90–100 Ma 
and 145–167 Ma (Branstetter et al. 2017; Peters et al. 
2017), respectively, we used a relaxed filtering approach for 
orthogroup identification. We allowed between one and 
three gene copies per species and for an orthogroup to be 

absent in up to one species (supplementary Table S6, 
Supplementary Material online).

Brain Transcriptome Read Mapping

We reprocessed all RNAseq raw reads in a standardized way 
using the publicly available Nextflow wrapper nf-core/rna
seq v.1.4.2 (di Tommaso et al. 2017). In short, for each da
taset, we trimmed raw RNAseq reads with TrimGalore! 
(Krueger et al. 2021), mapped the reads to their respective 
genome with STAR (Dobin et al. 2013), and obtained GFF 
(gene_id) feature read counts with FeatureCounts (Liao 
et al. 2014) (supplementary Table S5, Supplementary 
Material online). Read directions were adjusted as needed 
per experiment. We assessed mapping quality to ensure 
similarity across the six species’ datasets (Supplemental 
Methods and Results). Throughout, we refer to annotated 
features from the GFFs as “genes’.

Pre-processing Transformation of Data

Fair comparison of features between species, such as DEGs 
and SVM, requires degrees of pre-processing transforma
tions. We employed three methods: variance stabilization, 
species normalization (‘species awareness’), and data scal
ing, which we describe here. Prior to all analyses, combined 
raw read counts of all species and samples were trans
formed by variance stabilization using the VST function in 
DESeq2 (Love et al. 2014). This generated constant var
iances within the matrix of all read counts (i.e., a homosce
dastic dataset). Where the experimental design called for 
“species awareness’, that is controlling for the effect of 
species on gene expression, we included species as an ex
planatory variable in the model when constructing the ma
trix of VST read counts. This generated species-aware data. 
Finally, SVM analyses require center-scaled data to make 
each sample comparable to another. This was accom
plished by setting the mean of the species-aware VST 
counts to zero.

Principal Component Analysis

We conducted a PCA to examine whether overall brain 
gene expression clusters more by phylogeny than by repro
ductive division of labor as hypothesized. We performed 
the PCA using the PCAtools package in R (Blighe and Lun 
2021) on the VST (Love et al. 2014) raw RNAseq counts 
for 3,718 nearly single-copy orthogroups identified across 
the six species. We favored PCA over clustering methods 
such as cancer single-cell RNAseq autoencoders (Eraslan 
et al. 2019), because our sample size is smaller than typical 
cancer single-cell RNAseq. A PCA is an unsupervised meth
od used to reduce the dimensionality in large datasets by 
taking linear combinations of data—here gene expression 
—to define a new set of uncorrelated variables, called prin
cipal components. PCs are ordered to capture the 
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maximum variance explained, and thereby can be used to 
automatically define PCs that explain the most variation 
possible in gene expression. We took the top five PCs and 
tested individual eigenvalues for correlations with our traits 
of interest: clade, species, and reproductive phenotype. We 
then used PC biplots to infer the distances between sam
ples based on their gene expression.

We also repeated each PCA on each species for all genes 
with an RNAseq transcript > 1, separating samples by whether 
they come from reproductive versus non-reproductive sam
ples (supplementary fig. S1, Supplementary Material online) 
and found that gene expression patterns are, in some species 
more than in others, distinct between alternative social 
phenotypes. Finally, we ran randomized PCA by shuffling 
the attributed phenotypes and confirmed that the subtle dif
ferences between gene expression cannot be solely measured 
by PCA (supplementary fig. S23, Supplementary Material
online).

Machine Learning Analyses with SVM

SVM (Cortes and Vapnik 1995) is a supervised classification 
algorithm that can be used to predict phenotypes on the 
basis of data classification such as morphological measure
ments or expression patterns. It has been used to distin
guish subtle differences in human cancer subtypes (Yuan 
et al. 2020), to find non-expressed yet cancer-associated 
genes (Ghanat Bari et al. 2017) and to explore microbiome 
(Dhungel et al. 2021); as well as to contrast behavioral phe
notypes in social Damaraland mole-rats (Johnston et al. 
2021), in honeybees (Liang et al. 2014), and paper wasp 
P. dominula (Taylor et al. 2021). SVM is a complementary 
approach to conventional differential gene expression ana
lysis such as DESeq2. It has proven successful classification 
accuracy in benchmarks study against other methods such 
Random Forest (Zararsz et al. 2017) and Naïve Bayes 
Classifier (Ramdaniah et al. 2019) and has proven equally 
successful as Random Forest in predicting waggle dance 
genes (Veiner et al. 2022).

SVMs identify the hyperplane between classes such that 
the distance between the hyperplane and the nearest point 
of the classes has been maximized. Even when there is no 
separating hyperplane, SVM produces classifiers by allow
ing some classification error up to a constant and maximiz
ing the margin between the hyperplane and the nearest 
point. This may further make it a suitable choice for distin
guishing subtle differences in gene expression that may be 
less likely to be detected by conventional DE methods due 
to either low sample sizes or noisier expression patterns, 
as seen in plastic phenotypes (Taylor et al. 2021) or in-silico 
pooled data containing both septic and non-septic patient 
samples (Schaack et al. 2021).

We use a Train/Test Split approach, in which we test the 
data of each species against a model that has been trained 

on the other five species’ datasets (see schematic in 
supplementary fig. S21, Supplementary Material online). 
The result is a list of the 3,718 nearly single-copy ortholo
gous genes predicted by the SVM as differentially expressed 
between reproductive (coded as 1) and non-reproductive 
(coded as 0) phenotypes.

In short, the raw read counts of the 3,718 orthologous 
genes in reproductive and non-reproductive samples from 
the six species (82 samples in total) were first transformed 
by variance stabilization with use of the full experimental 
design (i.e., within species normalization) in the DESeq2 R 
package (Love et al. 2014; R Core Team 2014). The data 
matrix was then center-scaled. To identify the appropriate 
kernel function, we calculated accuracy rates from SVM 
models run on each dataset using the e1071 R package 
(Meyer et al. 2015) with linear and radial kernels and the 
following parameters: formula = phenotype ∼ read counts, 
type = C-classification. Radial kernel consistently led to bet
ter prediction accuracy (i.e., higher accuracy rate for radial 
kernel than linear kernel, see confusion matrices in 
supplementary Table S7, Supplementary Material online 
and Receiver Operating Characteristics curves in 
supplementary fig. S20, Supplementary Material online). 
Thus, all subsequent models were fit using this kernel and 
a grid search of gamma between 10−7 and 10−5 and cost 
between 23 and 25. Next, for each of the six species, we 
constructed a full model with a k = 3-fold cross validation, 
in which a random third of the training samples is tested 
against the remaining training samples. Next, for each of 
the six species, we constructed a full model with a k = 
3-fold cross validation, in which a random third of the sam
ples for that species is tested against the remaining all spe
cies’ samples as training data. K-fold Cross-Validation 
technique was recently benchmarked the best for sample 
size range of 20–100 (Vabalas et al. 2019). We thus ob
tained a full-model prediction error rate for each species 
based on the predicted phenotype versus the actual pheno
type. Error rate is the performance measure of the predic
tion, specifically the mean squared error rate for 
regression (from the e1071 R package tune function): the 
smaller the error rate is, the better the SVM predicts the 
phenotype based on the read counts.

We then opted for feature selection (i.e., filtering for the 
genes that best predict the phenotype) as an embedded 
method in the SVM iterations, because it is fast, better per
forming than univariate filter techniques (Saeys et al. 2007), 
and widely used in detection of loci associated with cancer 
(Abeel et al. 2010), plant drought-resistance (Liang et al. 
2011), honey bee waggle dance (Veiner et al. 2022). We 
performed a leave-one-species-out iterative process, in 
which one species was chosen as the test dataset and the 
remaining five were used as the training set. Over 20 itera
tions, SVM models were run while fine-tuning the para
meters of gamma and cost. The resulting model with the 
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lowest error rate was used to assign weights to each of the 
3,718 genes, where a higher weight meant that the gene 
was better at predicting the reproductive phenotype (coded 
as 1). Feature weights were calculated by taking the matrix 
product of the coefficients for the model with its support 
vectors. We then performed recursive feature elimination, 
where at each step the gene with the lowest weight was re
moved, and the resulting model was again tuned using the 
remaining genes. This remove-one-gene cycle was iterated 
until the input dataset contained 100 genes only, when the 
error rate trend increases as seen in a previous study (Taylor 
et al. 2021). We selected the optimized model with the low
est error rate amongst these 3,618 best-performing mod
els. To validate the models, we ran additional 
randomization tests in which focal species’ phenotypes 
were shuffled prior to be tested by the trained SVM model. 
We ran this randomization 100 times for each focal species, 
and assessed the true error rate against the distribution of 
error rates from randomized tests (supplementary fig. 
S22, Supplementary Material online). Lastly, a final SVM 
model was run using the parameters and the gene predic
tors of the optimized model. This resulted in a set of gene 
predictors that represent DE genes between the reproduct
ive and non-reproductive phenotypes for each of the six 
species. We then further filtered these predictor genes for 
those that overlap (1) across all six species and (2) overlap 
within just the bees or just the wasps. We also ran SVMs 
within a given lineage: testing a bee against the two other 
bees, and a wasp against the two other wasps.

Weighted Gene Co-expression Network Analysis

We used two conceptual frameworks to compare gene co- 
expression network conservation across all six species of 
bees and wasps, as well as within each clade. First, a multi
species co-expression network was constructed using near
ly single-copy orthogroups to provide an overarching view 
of network structure for the species compared (i.e., 
orthology-dependent). We used this to ask whether a con
served network of gene expression exists, and whether any 
modules within that network were significantly associated 
with social phenotype across all species compared. 
Second, an individual species network was constructed 
from all genes with sufficient expression for that species, re
gardless of orthology (i.e., orthology-independent). All ana
lyses were performed using the “wgcna” package 
(Langfelder and Horvath 2008) on variance-stabilized 
(Love et al. 2014) read counts after removing genes with 
zero expression or without variance across samples.

First, we constructed consensus co-expression networks 
using variance-stabilized read counts with Weighted Gene 
Co-expression Network Analysis (WGCNA). We manually 
constructed consensus networks using the nearly single- 
copy orthogroups shared across the species in the 

comparison. The resulting consensus network modules 
are based on the co-expression distance after hierarchical 
clustering. We then performed a meta-analysis testing for 
significance of network modules with reproductive pheno
type and report those genes with significant membership in 
the phenotype-correlated modules and which show signifi
cant correlation with the phenotype themselves. We calcu
late a Z-score to test the module preservation relative to our 
phenotypes of interest, as well as to test whether specific 
genes are significantly correlated across all species with 
(a) phenotype-associated modules and (b) reproductive sta
tus regardless of module status (Langfelder et al. 2013). We 
further tested whether significantly trait-associated ortho
logs were a result of random chance and small sample sizes 
by testing whether they deviate from a null expectation. To 
do this, we shuffled the reproductive status labels before 
constructing the network, and resampled the network k = 
1000 times. We calculated the proportion of point esti
mated genes found in a given resampling event, and de
rived a two-tailed P-value as the number of times this 
proportion was more extreme than 50%, the null expect
ation, divided by k resampling events.

Note that the topology of the network is highly depend
ent on the minimum module size set in WGCNA; therefore, 
we also took an iterative approach to the minimum module 
size parameter. We report results for a minimum module size 
of 30 and 10, as 10 was found to be robust for module pres
ervation in a benchmarking study (Li et al. 2015).

Second, we constructed individual co-expression net
works from variance-stabilized read counts of all genes 
with minimal expression regardless of homology. The genes 
that were significantly correlated with reproductive and 
non-reproductive phenotypes were then used to test for 
common functional enrichment among the species.

Differential Gene Expression Analysis

To compare with the results of the SVM, differentially 
expressed genes were called between reproductive and 
non-reproductive phenotypes in two ways: orthology- 
dependent and orthology-independent. The orthology- 
dependent analyses were intended to compare the results 
of DE gene calling to those of the SVM. We also opted 
for an orthology-independent analysis to identify possible 
non-orthologous differentially expressed (DE) genes. For 
example, a common toolkit across these six species might 
not be conserved genes but instead conserved functions.

For the orthology-dependent analysis, for each species 
we used DESeq2 (Love et al. 2014) to call DE genes between 
reproductive and non-reproductive phenotypes. In this 
method, we applied the DESeq function to the raw read 
counts for the nearly single-copy orthogroups for the spe
cies comparisons being made (all six species, bees only, 
wasps only). Significant differential gene expression was 
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determined using an FDR-adjusted P-value of 0.05 as the 
threshold. For the orthology-independent analysis, the 
raw read counts for all genes for each species in the com
parison were used. We also employed a permutation- 
testing approach to ensure that there was no difference 
in the numbers of DE genes obtained from DESeq2 due 
to uneven sample sizes among our species 
(supplementary Table S6, Supplementary Material online). 
The DESeq function was applied only once using a model 
that included a term for clade in addition to phenotype, 
and significant DE genes were called using an 
FDR-adjusted P-value of 0.05. This was to allow us to iden
tify any genes with a sufficiently strong signal of DE across 
all species in the comparison after accounting for 
phylogeny.

For the orthology-independent analysis, we took all raw 
read counts for each species without filtering for 
orthogroups. For each species, we identified which genes 
are significantly DE between the reproductive phenotypes 
using an FDR-adjusted P-value of 0.05. We once again em
ployed a permutation approach to correct for differences 
between the species in the number of samples.

Functional Interpretation of Candidate Genes

We performed GO Term enrichment analysis for genes that 
are significantly DE. We first obtained the best similarity hits 
against D. melanogaster’s protein set using BLASTp 
V.2.2.30 (Altschul et al. 1990) for each species’ protein 
set. We then obtained enriched GO Terms using R 
biomaRt v. 2.42.1 (Durinck et al. 2005) and TopGO 
v. 2.38.1 (Alexa and Rahnenfuhrer 2010) with the follow
ing parameters: terms with at least five annotated genes, 
classic algorithm, Fisher statistics. We find between 39 
and 206 enriched Biological Processes GO Terms per spe
cies, between 18 and 72 enriched Molecular Function GO 
Terms, between 4 and 68 enriched Cellular Components 
GO Terms (Table ST9). Only a few GO Terms are common 
to several species, the largest set is 15 GO Terms common 
to Ce. australensis and L. flavolineata. We also performed 
GO Term enrichment analysis for WGCNA genes 
(supplementary Table S10, Supplementary Material online) 
and SVM predictor genes (supplementary Tables S4, S16, 
and S17, Supplementary Material online).

We performed a REVIGO analysis of the enriched GO 
terms from 127 SVM predictor genes (parameters: medium 
resulting list, species: Drosophila melanogaster, SimRel 
measure [Supek et al. 2011]), reducing the GO Term list 
to less redundant Terms (fig. 3).
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