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Effects of nutritional deprivation on development and behavior in
the subsocial beeCeratina calcarata (Hymenoptera: Xylocopinae)
Sarah P. Lawson1, Salena L. Helmreich2 and Sandra M. Rehan1,*

ABSTRACT
By manipulating resources or dispersal opportunities, mothers can
force offspring to remain at the nest to help raise siblings, creating a
division of labor. In the subsocial bee Ceratina calcarata, mothers
manipulate the quantity and quality of pollen provided to the first
female offspring, producing a dwarf eldest daughter that is physically
smaller and behaviorally subordinate. This daughter forages for her
siblings and forgoes her own reproduction. To understand how the
mother’smanipulation of pollen affects the physiology and behavior of
her offspring, we manipulated the amount of pollen provided to
offspring and measured the effects of pollen quantity on offspring
development, adult body size and behavior. We found that by
experimentally manipulating pollen quantities we could recreate
the dwarf eldest daughter phenotype, demonstrating how nutrient
deficiency alone can lead to the development of a worker-like
daughter. Specifically, by reducing the pollen and nutrition to
offspring, we significantly reduced adult body size and lipid stores,
creating significantly less aggressive, subordinate individuals.
Worker behavior in an otherwise solitary bee begins to explain how
maternal manipulation of resources could lead to the development of
social organization and reproductive hierarchies, a major step in the
transition to highly social behaviors.

KEY WORDS: Maternal manipulation, Division of labor, Small
carpenter bee, Social evolution, Worker behavior, Phenotypic
plasticity, Social insect

INTRODUCTION
Maternal manipulation has been posited as a mechanism for the
evolution of eusociality (Alexander, 1974; Michener and Brothers,
1974; Charnov, 1978; Craig, 1979; Queller, 1996; Crespi and
Ragsdale, 2000; Kapheim et al., 2015). By limiting resources or
nesting options, mothers can force offspring to remain at the nest
and help raise siblings. This behavior has been observed across a
wide variety of taxa from mammals (Briga et al., 2012) and birds
(Clarke, 1984; Stacey and Koenig, 1990) to bees (Hogendoorn,
1996; Hogendoorn et al., 2001) and wasps (Gadagkar, 1991;
Gadagkar et al., 1991). The imposed division of labor between a
reproductive individual and her worker offspring is considered a key
component in the evolution of highly social groups. Reproductive
division of labor can arise through physical manipulation and
differential maternal investment in each offspring (Mousseau and
Fox, 1998). Investment in offspring, including food and protection,

can influence offspring development, survival and behavior (Wade,
2001; Reinhold, 2002; Wilson et al., 2005; Wolf and Wade, 2009;
Kapheim et al., 2011).

In Hymenoptera, larval diet directly correlates with adult body
size and influences caste determination, colony performance and
social interaction (Andersson, 1984; Packer and Knerer, 1985; Hunt
and Nalepa, 1994; Hunt and Amdam, 2005; Toth et al., 2009;
Quezada-Euán et al., 2010; Brand and Chapuisat, 2012). Larval
diet also allows for increased lipid stores, which are directly
correlated to overwintering success (Tepedino and Torchio, 1982;
Strassmann et al., 1984; Strohm and Linsenmair, 1999). In most
bees, the mother forages for pollen and nectar to make a pollen ball
to lay her egg upon. Each pollen ball contains all the nutrients each
offspring will need to develop from larva to adult (Michener, 1974,
2007). Previous research in honey bees and bumble bees
demonstrated that foraging workers can determine variations in
the nutritional quality of pollen and will preferentially collect pollen
containing higher essential amino acids or protein content (Cook
et al., 2003; Behmer, 2009; Konzmann and Lunau, 2014; Somme
et al., 2014; Vaudo et al., 2014; reviewed in Vaudo et al., 2015).

Poor larval nutrition significantly reduces body size and has been
shown to have major impacts on adult physiology (Birkhead et al.,
1999; Lummaa and Clutton-Brock, 2002; Ozanne et al., 2004) and
behavior (Hunt et al., 2005). Specifically, mating and foraging
success are negatively impacted (Muller et al., 2015; Xie et al.,
2015). In eusocial honey bees, previous research has shown that
larval developmental fate depends on diet and nutrients. Body and
ovary size are the result of differences in larval nutrition provided by
nurse workers (Linksvayer et al., 2011).

Less is known about how larval nutrition affects social
interactions and the development of hierarchies in solitary or
subsocial species. In primitively eusocial species, social dominance
hierarchies are often determined by body size, where the smaller
individual assumes a subordinate position (Smith et al., 2009); thus,
poor larval nutrition would reduce competitive ability (Huntingford
and Turner, 1987; Withee and Rehan, 2016, 2017). Comparisons of
social complexity and life history between social species and their
solitary relatives can offer insights into the evolution of social
behavior (Michener, 1974; Rehan and Toth, 2015; Shell and Rehan,
2017). By understanding how maternal manipulation of larval
nutrition affects growth, development and behavior of offspring in
subsocial species, we can begin to understand the role maternal
investment plays in the development of division of labor.

Ceratina calcarata is a small carpenter bee widespread across
eastern North America (Shell and Rehan, 2016). Females build
nests in spring within branches of dead broken pithy stems. Over the
next few weeks, females singly forage and lay eggs on nutrient-rich
pollen balls (Rehan and Richards, 2010a). Like all hymenopteran
species, C. calcarata mothers have complete control over the body
size and sex of offspring (Rehan and Richards, 2010b). Mothers can
adjust the quantity of food provided to offspring and in turn theirReceived 1 April 2017; Accepted 26 September 2017
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resultant body size (Johnson, 1988; Rehan and Richards, 2010b).
The pollen balls provisioned vary among brood cells and sexes, with
larger females receiving larger mass provisions than males.
Previous studies have shown that the first egg laid and first brood
cell position are female biased (Johnson, 1988; Rehan and Richards,
2010b). This eldest daughter is smaller than her siblings because
she receives a smaller mass provision (Lawson et al., 2016).
Interestingly, this dwarf eldest daughter (DED) serves only as a
worker for the colony and does not reproduce (Rehan and Richards,
2010b; Rehan et al., 2014). The DED is significantly smaller than
other females in the nest and displays more subordinate behavior
(Mikát et al., 2017). Manipulation of pollen quantity by the mother
leads to one of the three hallmarks of eusocial behavior,
reproductive division of labor, whereby the mother serves as the
reproductive individual and the DED acts as the worker (Rehan and
Richards, 2013; Rehan et al., 2014). Thus, understanding how
pollen quantity provided to offspring affects body size, lipid stores
and behavior may help us better understand how division of labor is
established during the earliest stages of social group formation.
The goals of this study were: first, to measure how the amount of

pollen provided to offspring affects body size and lipid stores, and
second to determine whether and how the mass of the pollen ball
affects offspring behavior. By experimentally manipulating the
amount of pollen provided, we separated the effects of maternal
manipulation of pollen quantity from the effects of maternal
interactions. We could therefore determine whether pollen quantity
alone is enough to create aworker-like daughter or whether maternal
interaction is needed to develop the social hierarchy betweenmother
and daughter.

MATERIALS AND METHODS
Collection and nest measurements
Nests of C. calcarata Robertson 1900 were collected from staghorn
sumac (Rhus typhina) stands in Durham, NH, USA (43.1339°N,
70.9264°W) between 4 June and 1 August 2015. Nests were
collected before 08:00 h to ensure the presence of mother and brood.
Nests were dissected in the lab and nest contents were recorded
including brood developmental stages, number of brood cells, nest
width and length and the presence of an adult female who was
assumed to be the mother. Measurements of adult bees included
head width (which is a strong predictor of body size) and wing wear
(a useful proxy for age and foraging; Rehan and Richards, 2010a).
Adult bees were stored at −80°C for later lipid quantification. A
total of 370 brood from 123 nests were used for pollen manipulation
experiments and then stored in the incubator at 25°C with 50%
humidity until eclosion.

Pollen manipulation
Early stage larvae and eggs were removed from nests, weighed using
a Mettler analytical balance (accuracy 0.01 mg) and randomly
assigned to a control group or one of two treatment groups. The
pollen of the control group remained unmanipulated. For the
treatment groups, approximately 1/3 of the pollen ball was removed
from one group and added to the other group. Both treatment groups
were reweighed and offspring and pollen ball were placed in PCR
tubes in the incubator at 25°C with 50% humidity until reaching
their final molt. Offspring from later developmental stages were
raised in the incubator as additional controls. Every other day, the
development of the offspring was assessed. The sex and mass were
recorded for all brood that reached adulthood. Sex was determined
by counting the number of metasomal terga; females have six
segments, while males have seven (Rehan and Richards, 2010a).

Adults were used in circle tube assays followed by lipid
quantification. To quantify the exact amount of pollen consumed,
we calculated the amount of pollen provided minus the amount of
pollen remaining when offspring began pupation.

Lipid quantification
To quantify body lipids from lab-reared adult bees raised on
manipulated pollen quantities, we followed methods previously
published for honey bees (Toth and Robinson, 2005) and solitary
bees (Richards and Packer, 1994; O’Neill et al., 2015). Briefly, bees
previously frozen at −80°C (see ‘Behavioral assays’, below) were
placed in a homogenizer tube and ground with a glass rod. Extraction
was carried out by addition of 5 ml of 2:1 chloroform:methanol
solvent overnight. To purify the sample, we poured the solvent and
sample through glass wool and rinsed with 2 ml of 2:1 chloroform:
methanol. The sample was quantified using a Spectramax 250
spectrophotometer and compared with a standard curve of 0, 10, 50,
100 and 500 µl of cholesterol in petroleum ether.

Behavioral assays
To quantify the behavioral effects of nutritional addition or
reduction, we used circle tube assays to observe behavioral
interactions between age and size-matched treatment and control
individuals. Circle tube assays provide an environment suitable for
observation of interactions between individuals, which are similar to
those in their natural nest (Brothers and Michener, 1974; Breed
et al., 1978; Packer, 2006). To perform a trial, bees were
simultaneously introduced to opposite ends of a clean plastic
circle tube with an internal diameter of 4 mm (double the average
head width of C. calcarata) and a length of 30 cm (40 times the
average C. calcarata body length). A new tube was used for each
trial. To decrease variation between trials, all circle tube assays were
completed indoors in a standard arena. Tubes were placed under two
UV lights to simulate UV rays and a single 120 V bulb for heat.
Temperature was measured every minute to ensure that all trials
were run between 32 and 38°C. Pairs were observed for 20 min and
all interactions were documented. Interactions, when bees were
within one body length of one another, were classified into four
categories previously published by Rehan and Richards (2013):
aggression, avoidance, tolerance and following. Briefly, aggressive
behaviors include nudging, biting or C-posturing, when the bee
curls its abdomen under the thorax, displaying both mandibles and
sting. Avoidance behaviors include backing away from or reversing
180 deg to move away from the other bee. Passing, and antenna-to-
antenna or head-to-head contact were considered tolerant behaviors.
Following has been classified as a cooperative behavior in some
communal species (McConnell-Garner and Kukuk, 1997; Boesi
and Polidori, 2011), a subordinate behavior in some eusocial
species (Breed et al., 1978; Michener, 1990) and as a dominant
behavior in other species (West-Eberhard, 1979). Because of the
uncertainty of the meaning of this interaction, following behaviors
were classified separately. After behavioral trials, all bees were
frozen at −80°C for later lipid quantification. To account for
differences in paired circle tube assays, we compared the relative
differences in behavioral frequencies. All differences between pair
members were calculated as (value for treatment bee, pollen added
or removed)−(value for control bee).

Statistical analysis
Pollen consumed, head width and lipid content of the adult bees
were all separately tested with the Shapiro–Wilk test for normality
and Levene’s test for equality of variance. All comparisons were
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analyzed using a two-way ANOVA followed by post hoc Tukey–
Kramer test. Where necessary, data were normalized via log
transformation (Sokal and Rohlf, 1995). If the data were not normal,
a Kruskal–Wallis test was used followed by a post hoc Dunn’s test.
Differences in behavioral frequencies between control and treatment
groups were compared using a two-way ANOVA for normal data or
a Kruskal–Wallis test for non-normal data. All statistical analyses
were performed in JMP v.7.01 (SAS, Cary, NC, USA). All reported
P-values are two-tailed.

RESULTS
Pollen manipulation
To confirm the effectiveness of the pollen manipulation treatment,
we first compared the amount of pollen consumed by the control
group and each treatment group.We calculated the amount of pollen
consumed as the amount of pollen provided minus the amount of
pollen remaining at the onset of pupation. There was a significant
difference in the amount of pollen consumed between the three
groups (Kruskal–Wallis test χ2=57.17, d.f.=2, P<0.0001; Dunn’s
test, control versus pollen added P=0.30, control versus pollen
reduced P<0.0001, pollen added versus pollen reduced P<0.0001;
Fig. 1). Ceratina calcarata raised with additional pollen consumed
significantly more pollen (N=56, mean±s.e.m., 25.04±1.06 mg)
than C. calcarata raised on a pollen ball in which pollen had been
reduced (N=67, 15.05±0.54 mg). However, bees raised with
additional pollen did not consume significantly more pollen than
controls (N=51, 22.08±0.79 mg).
The difference in pollen consumption between the groups was

directly associated with adult head width. Ceratina calcarata raised
with additional pollen were significantly larger (N=56, head width
mean±s.e.m., 1.63±0.02 mm) than those raised with less pollen
(N=67, 1.51±0.02 mm), but not significantly different from
controls (N=51, 1.66±0.02 mm; ANOVA with log transformation
F-ratio=14.71, d.f.=2, P<0.0001; Tukey–Kramer test, control
versus pollen reduced, P<0.0001; control versus pollen added,
P=0.59; pollen added versus pollen reduced, P=0.0002; Fig. 2).

Stored fats, as measured by lipid quantity in the abdomen, were
significantly affected by pollen consumption. Ceratina calcarata
raised with additional pollen had significantly greater fat stores
(N=50, mean±s.e.m., 3.34±0.17 g) than those raised with reduced
pollen (N=47, 2.85±0.19 g). Similar to head size, lipid quantity was
not significantly different betweenC. calcarata raised with additional
pollen and controls (N=39, mean±s.e.m., 3.65±0.24 g), but bees
raised with less pollen had significantly less fat than controls
(Kruskal–Wallis test χ2=9.90, d.f.=2, P=0.007; Dunn’s test, control
versus pollen added P=1.00, control versus pollen reduced P=0.01,
pollen added versus pollen reduced P=0.05; Fig. 3).

In addition to final adult size, total pollen consumption had a
significant effect on developmental rate. The total development time
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Fig. 2. The amount of pollen consumed during development is directly
associated with adult body size as measured by head width. Ceratina
calcarata raised with additional pollen were significantly larger (N=56) than
those raised with less pollen (N=67), but not significantly different from controls
(N=51; ANOVA with log transformation F-ratio=14.71, d.f.=2, P<0.0001;
Tukey–Kramer test, control versus pollen reduced, P<0.0001; control versus
pollen added, P=0.59; pollen added versus pollen reduced, P=0.0002). Data
are means±s.e.m.

0

5

10

15

20

25

30

Control Reduced Added

P
ol

le
n 

co
ns

um
ed

 (g
)

Treatment group

a
a

b

Fig. 1. Pollenmanipulation. To confirm the effectiveness of the treatment, we
calculated the amount of pollen consumed by each group (data are means±
s.e.m.). Ceratina calcarata raised with additional pollen consumed significantly
more pollen (N=56) thanC. calcarata raised on a pollen ball in which pollen had
been reduced (N=67). However, bees raised with additional pollen did not
consume significantly more pollen than controls (N=51). There was a significant
difference in the amount of pollen consumed between the three groups
(Kruskal–Wallis test χ2=57.17, d.f.=2, P<0.0001; Dunn’s test, control versus
pollen added P=0.30, control versus pollen reduced P<0.0001, pollen added
versus pollen reduced P<0.0001). Letters indicate significant differences.
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Fig. 3. The amount of pollen consumed during development has a
significant effect on lipid stores. Shown is the lipid quantity for the control
group and the two treatment groups (data are means±s.e.m.). Ceratina
calcarata raised with additional pollen had significantly greater fat stores
(N=50) than those raised with reduced pollen (N=47). Lipid quantity was not
significantly different between C. calcarata raised with additional pollen and
controls (N=39), but bees raised with less pollen had significantly less fat than
controls (Kruskal–Wallis test χ2=9.90, d.f.=2, P=0.007; Dunn’s test, control
versus pollen added P=1.00, control versus pollen reduced P=0.01, pollen
added versus pollen reduced P=0.05).
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of bees in the control group was 36.96±0.98 days (mean±s.e.m.).
Although final body size was significantly different between control
offspring and those raised with less pollen, developmental rate did
not differ significantly between these groups (36.33±0.95 days;
Figs 2 and 3). Ceratina calcarata provided with more pollen, took
significantly longer to develop than either of the other groups
(39.21±1.11 days; Kruskal–Wallis test χ2=16.56, d.f.=2, P=0.0009;
Table 1). Specifically, development was significantly longer during
three developmental stages: early in the larval stage (when the larva
is 1/3 to 1/2 the length of the pollen ball), the prepupal stage and the
early pigmented pupal stage (Table 1).

Behavioral assays
To assess the behavioral effects of food deprivation and abundance,
we used circle tube assays to compare the number of interactions of
each type between control and treatment groups: a positive value
indicated the treatment group had more interactions than the control
group, while a negative value indicated the treatment group had
fewer interactions. The offspring provided with less pollen were
significantly smaller than those provided with additional pollen
(pollen added N=20, 0.52±0.22; pollen removed N=12, −1.45±
0.23; ANOVA F-ratio=8.31, d.f.=1, P=0.01). When compared with
controls, C. calcarata raised with additional pollen (N=20, mean±
s.e.m. interactions, 0.68±1.37) were significantly more aggressive
than those raised with less pollen (N=12, −6.00±1.27; Kruskal–
Wallis test χ2=5.40, d.f.=1, P=0.02; Fig. 4A). There was no
significant difference between treatment groups in any other
behavioral type tested: following (pollen added N=20, 0.25±1.29;
pollen reduced N=13, −2.23±1.26; Kruskal–Wallis test χ2=0.36,
d.f.=1, P=0.55; Fig. 4B), avoidance (pollen added N=20, 0.30±
1.13; pollen reduced N=13, 0.38±1.25; Kruskal–Wallis test
χ2=0.00, d.f.=1, P=1.00; Fig. 4C), or tolerance (pollen added
N=20, 4.95±3.03; pollen reduced N=13, −0.62±3.93; Kruskal–
Wallis test χ2=1.18, d.f.=1, P=0.28; Fig. 4D). Additionally, there

was no significant difference between the total number of
interactions (pollen added N=20, 2.65±4.45; pollen reduced
N=13, −6.31±6.02; Kruskal–Wallis test χ2=1.71, d.f.=1, P=0.19).

DISCUSSION
Maternal manipulation of resources by C. calcaratamothers results
in the development of a DED (Rehan and Richards, 2010b). The
DED receives significantly less pollen and protein than other
daughters, resulting in a smaller adult body size (Rehan and
Richards, 2010b; Lawson et al., 2016). The DED serves as the
worker for the nest, sacrificing her own direct fitness to help raise
siblings (Rehan and Richards, 2010b; Rehan et al., 2014; Mikát
et al., 2017). By manipulating the quantity of pollen provided to
developing offspring, wewere able to successfully manipulate adult
body size, lipid stores and behavior.

Confirming our methods, we found that offspring provided with
additional pollen consumed significantly more pollen than
offspring provided with reduced amounts of pollen. Surprisingly,
offspring provided with more pollen did not consume significantly
more than controls and had pollen remaining following larval
developmental stages (Fig. 1). This implies there is an upper limit to
the amount of pollen that can be consumed. This is one of the first
reports of an upper limit to the amount of pollen consumed by
immature bees. Past research in the sweat bee, Lasioglossum
zephyrum, has shown there is a maximum level of protein that can
be consumed, but not total pollen (Roulston and Cane, 2002).
Research in bumble bees has shown that workers forage specifically
for essential proteins and macronutrients, implying that specific
nutrients might be more important than pollen quantity or protein
amount (Vaudo et al., 2016). Further research is needed to explore
the effects of macronutrients in larval development and pollen
consumption.

Next, we measured how the quantity of pollen provided to
offspring affects body size and lipid stores. As with most

Table 1. Development rate of Ceratina calcarata from the pollen manipulation treatment

Stage

Control Pollen reduced Pollen added

Days N Days N Days N

Egg 3.20±1.64 44 3.59±1.56 58 3.54±1.48 50
Larva
1/3 pollen ball 1.33±0.68 51 1.44±0.84 64 1.89±0.98 57
1/2 pollen ball 1.22±0.67 51 1.22±0.64 69 1.67±0.96 58
2/3 pollen ball 1.55±0.99 51 1.46±0.87 70 1.94±1.38 60
1× pollen ball 2.09±1.65 50 1.72±1.15 68 2.69±2.13 59
1.5× pollen ball 1.34±0.66 51 1.61±1.16 69 1.53±1.06 59
2× pollen ball 1.37±0.79 51 1.40±0.82 66 1.28±0.70 59
Trace bit pollen ball 1.48±0.77 51 1.40±0.79 66 1.26±0.76 59
Full grown 2.05±1.34 51 2.13±1.40 66 1.89±1.28 59
Prepupae 5.06±1.88 51 5.06±2.19 62 6.19±3.49 56

Pupa
White 1.99±0.83 51 2.18±0.81 59 2.08±0.81 54
Pink 1.57±0.62 51 1.58±0.52 59 1.70±0.72 53
Red 1.63±0.83 51 1.49±0.56 59 1.69±0.84 53
Brown 2.47±1.23 51 1.97±0.95 59 2.27±1.22 53
Black 1.64±0.73 51 1.58±0.89 59 1.40±0.58 53
1/4 pigment 1.24±0.65 50 1.18±0.59 59 0.95±0.44 53
1/2 pigment 1.19±0.80 49 1.06±0.51 59 0.98±0.49 53
3/4 pigment 1.36±0.76 46 1.24±0.62 58 1.13±0.49 52
Fully pigment 3.18±1.11 38 3.02±1.09 51 3.13±1.25 48

Total 36.96±0.98 940 36.33±0.95 1180 39.21±1.11 174

The duration of each developmental stage (grouped under the main developmental stages egg, larva and pupa) is given as the mean±s.d. number of days.
Ceratina calcarata raised with more pollen took significantly longer to develop than those in the control and pollen reduced groups (P=0.0009). Most of the
additional development time was in the larval stage, where all feeding occurs. Bold indicates a significant difference.
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Hymenoptera, pollen consumption in C. calcarata was directly
associated with adult body size (Fig. 2) (Andersson, 1984; Packer and
Knerer, 1985; Hunt and Nalepa, 1994; Hunt and Amdam, 2005; Toth
et al., 2009; Quezada-Euán et al., 2010; Brand and Chapuisat, 2012).
Offspring provided with less pollen were significantly smaller than
controls or those provided with more pollen (Fig. 2). Smaller adult
body size in Hymenoptera has been associated with a number of
negative fitness correlates. Larger individuals maintain higher body
temperatures allowing for foraging earlier in the season, with more
frequent trips (Stone, 1993). Larger females have larger brood (Tengo
and Baur, 1993), more offspring surviving to adulthood (Sugiura and
Maeta, 1989; Larsson, 1990; Kim, 1997) and more female-biased
nests (Rehan and Richards, 2010b). In some species, male mating
success is tightly correlated with body size. For example, in the
anthophorine beeCentris pallida, larger males are better at defending
mating territories (Alcock, 1995). Larger male Dawson’s burrowing
bees, Amegilla dawsoni, displace smaller males, forcing them to
adopt alternative mating strategies (Alcock, 1997).
Reduced body size is correlated with fewer energy reserves in

many insect species (Briegel et al., 2001; Barrett et al., 2009; Lease
and Wolf, 2011; Sisterson et al., 2015). Our experiments revealed
that offspring provided with less pollen had significantly smaller
lipid stores than offspring provided with additional pollen (Fig. 3).
Increased lipid stores allow larger females to better survive diapause
(Tepedino and Torchio, 1982; Strassmann et al., 1984; Strohm and
Linsenmair, 1999). Past research on C. calcarata found that lipid
metabolism is upregulated in overwintering bees (Durant et al.,
2016). Additionally, increased lipid stores have been linked to an
increase in reproductive potential in Polistes metricus (Toth et al.,
2009) and Apis mellifera (Toth and Robinson, 2005).
Finally, our results show that larger offspring provided with more

pollen are significantly more aggressive than offspring provided

with less pollen. No other behavioral class significantly differed
between treatment groups (Fig. 4). In social insects, dominance
hierarchies are thought to be a precursor to reproductive hierarchies
of caste systems (West-Eberhard, 1967; Gadagkar, 1980). In forced
association studies, largely solitary species will form social
dominance hierarchies, indicating these species possess
behavioral precursors to higher levels of social organization
(Sakagami and Maeta, 1977; Michener, 1985; Arneson and
Wcislo, 2003). Dominance hierarchies are often determined by
body size, where the smaller individual assumes a subordinate role
(Smith et al., 2009; Trible and Kronauer, 2017); thus, poor larval
nutrition would reduce competitive ability (Huntingford and
Turner, 1987; Withee and Rehan, 2016). For example, hierarchies
in subsocial and primitively eusocial Hymenoptera, such as C.
calcarata, Lasioglossum zephyrum and Mischocyttarus
mastigophorus, are determined by dominance interactions, where
larger females often become the reproductive individual and smaller
females serve as workers (Kumar, 1975; Buckle, 1982; Molina and
O’Donnell, 2008; Withee and Rehan, 2016). Specifically, in C.
calcarata, mothers produce a DED by providing her with less pollen
and nutrients than other daughters, resulting in a significantly
smaller adult body size (Rehan and Richards, 2010b; Lawson et al.,
2016). Because the DED is significantly smaller and typically less
aggressive, the mother is able to coerce the DED to forage, thus
forgoing her opportunity to reproduce and instead serving as the
worker for the nest (Rehan and Richards, 2010b; Rehan et al.,
2014). By manipulating the quantity of pollen, we were able to
recreate the DED phenotype. By limiting pollen to offspring, we
created significantly smaller, less aggressive individuals. Future
work is needed to tease apart the effects of nutritional quantity
versus quality on the development of social hierarchies in a
subsocial species.
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Positive numbers indicate more interactions by the treatment group relative to the control group, while negative numbers indicate fewer interactions relative to the
control group (data are means±s.e.m.). (A) When compared with controls, C. calcarata raised with additional pollen (N=20) were significantly more
aggressive than those raised with less pollen (N=12; Kruskal–Wallis test χ2=5.40, d.f.=1, *P=0.02). There was no significant difference between treatment groups
in any other behavioral type tested: (B) following (pollen added N=20; pollen reduced N=13; Kruskal–Wallis test χ2=0.36, d.f.=1, P=0.55), (C) avoidance
(pollen added N=20; pollen reduced N=13; Kruskal–Wallis test χ2=0.00, d.f.=1, P=1.00), or (D) tolerance (pollen added N=20; pollen reduced N=13;
Kruskal–Wallis test χ2=1.18, d.f.=1, P=0.28).
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Conclusions
Ceratina calcarata mothers provide the first daughter with
significantly less pollen than other offspring, resulting in a
smaller daughter that will serve as the worker for the nest. By
manipulating pollen quantity during development, we recreated the
conditions of maternal manipulation and found that larval
nutritional deprivation has significant effects on development,
adult body size, lipid stores and behavior. We demonstrated how
maternal manipulation of nutrition allows the mother to control
adult body size. By creating a smaller daughter, the mother is able to
coerce the daughter into serving as the worker for the nest. This
maternal manipulation of resources leads to the development of the
social organization and reproductive hierarchies, a major step in the
transition to highly social behavior.
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