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Represented by more than 20,000 species 
worldwide, bees are among the most diverse 
and ubiquitous of the pollinating taxa (Kearns 
et al. 1998, Michener 2007). Bees enable the 
reproduction of angiosperm species, provid-
ing an indispensable service to their host 
 ecosystem (Engel 2000, Michener 2007) and 
directly facilitating more than a third of all 
global crop production (Klein et al. 2007, 
Gallai et al. 2009). Though most bee species 
will pollinate multiple angiosperm species 

( Waser et al. 1996), many bees demonstrate 
some preference for particular flora (e.g., 
Minckley et al. 1994, Larsson 2005). This 
 selectivity can lead to a highly specialized re-
lationship between pollinator and host, with 
each relying largely on the other for its repro-
ductive success. Such specialist plants and 
pollinators often occupy a relatively narrow 
ecological niche and may thus allow for 
 greater overall ecosystem productivity and 
biodiversity (Bascompte and Jordano 2007, 
Rogers et al. 2014). Generalist pollinators, by 
contrast, are not limited by their host plant 
species and may ultimately outcompete spe-
cialist fauna for resources and habitat use 
( Huryn 1997, Traveset and Richardson 2006, 
Hanna et al. 2014). Though relationships 
 between angiosperm and pollinator groups 
often comprise numerous taxa (Kearns et al. 
1998), such plant-pollinator mutualisms re-
main sensitive systems, directly affected by 
climatic, trophic, and anthropogenic factors 
[such as pollution and poor land use practices 
(Larsen et al. 2005, Müller et al. 2006, Win-
free 2010, Roulston and Goodell 2011; 
Groom, Stevens, et al. 2014)]. Global climate 
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change alone is predicted to cause a loss of up 
to 27% of European bee species by the year 
2050 ( Winfree 2010). Plant-pollinator sys-
tems may also be damaged by the transmis-
sion of disease among bee species (Durrer and 
Schmid-Hempel 1994), as has been inferred 
in the collapse of some North American bum-
blebee populations (Cameron et al. 2011).

The introduction of invasive species into 
novel ecosystems is a complex and often bio-
logically costly event (Lodge 1993, Reaser 
et al. 2007, Ricciardi et al. 2013, Vinson 2013, 
Lee et al. 2015). Once introduced, invasive 
species may engender a wide range of ecosys-
tem impacts (Kenis et al. 2009, Vinson 2013) 
and often come into direct competition with 
residents over shared resources (Snyder and 
Evans 2006, Hanna et al. 2014, Miller et al. 
2015). Introduced pollinator species may thus 
disrupt or even eliminate ecologically critical 
native pollinator-plant reproductive systems 
(Kato et al. 1999, Traveset and Richardson 
2006, Inoue et al. 2008; Groom, Ngo, et al. 
2014). The initial establishment and ensuing 
impact of invasive pollinators depends largely 
on the extant composition of the resident 
 ecosystem (see Sax et al. 2007, Ward and 
Johnson 2013). Those that are limited in area, 
resources, or biological diversity are generally 
more likely to be strongly affected by a com-
petent invader (Stachowicz and Tilman 2005). 
Island ecosystems are particularly fragile in 
this regard and thus tend to be of particular 
conservation concern when invasive species 
are introduced (Loope and Mueller-Dombois 
1989, Kato et al. 1999, Olesen et al. 2002, 
Reaser et al. 2007, Kenis et al. 2009; Groom, 
Ngo, et al. 2014).

Owing to their remote location, wide 
 elevation variation, and considerable rainfall 
 gradients, the Hawaiian Islands have come to 
host a multitude of rich and diverse ecosys-
tems (Simon 1987). As such, the Hawaiian 
archipelago has long been prized as a model 
bioregion for studies of speciation (Price and 
Wagner 2004, Cowie and Holland 2008), tro-
phic interaction (Gruner 2004), and island 
biogeography ( Whittaker et al. 2008). How-
ever, despite their geographic isolation (the 
nearest continental landmass, North America, 
is over 3,900 km away), the Hawaiian Islands 

have come to play host to an exhaustive list 
of invasive taxa ( Howarth 1985, Loope and 
Mueller-Dombois 1989, Snelling 2003, 
Stohlgren et al. 2006, Chau et al. 2015). The 
collective impact of invasive species on 
Hawai‘i is daunting (Pejchar and Mooney 
2009) and widely relevant to the threatened or 
endangered status of 375 species endemic to 
the archipelago (Magnacca and King 2013), 
with 39 plant and 10 animal species recently 
elevated to endangered status (see www.gpo 
.gov/fdsys/pkg/FR-2016-09-30/pdf/2016 
-23112.pdf ).

Seven of the 10 animal species now listed 
as endangered by the U.S. Fish and Wild-
life Service are members of Hawai‘i’s native 
yellow-faced bees [genus Hylaeus (Magnacca 
and King 2013)]. Hawai‘i’s 63 endemic spe-
cies of  Hylaeus appear to be largely specialist 
pollinators of native flora (Daly and Coville 
1982, Magnacca 2007a, Wilson et al. 2010, 
Koch and Sahli 2013). Though historically 
ubiquitous across the archipelago, many of 
Hawai‘i’s Hylaeus are now considered rare, 
threatened, or endangered (Magnacca 2007a, 
Magnacca and King 2013); and invasive Hy-
menoptera have been named as chief contrib-
utors to this extensive and ongoing decline 
( Wilson and Holway 2010, Hanna et al. 2014, 
Miller et al. 2015). There are currently at 
least 19 species of introduced bees across the 
Hawaiian archipelago, many of which were 
first recorded in the past 65 yr (Snelling 2003), 
and four within the last 5 yr (Magnacca et al. 
2013). Some of these invasive pollinators, 
such as the European honey bee, Apis mel
lifera (Kato et al. 1999, Miller et al. 2015), 
are  generalists: known to compete with na-
tive Hylaeus for resources while simultane-
ously promoting the reproduction of noxious, 
invasive angiosperm species (Richardson 
et al. 2000). It is thus of some ecological con-
cern that a generalist small green carpenter 
bee, Ceratina (Pithitis) smaragdula (Fabricius, 
1787), has been steadily establishing itself 
across the Hawaiian archipelago (Arakaki 
et al. 2001, Magnacca 2007b).

The small carpenter bees, genus Ceratina, 
occur globally and comprise approximately 
200 described species (Michener 2007, Rehan 
and Schwarz 2015, Shell and Rehan 2016). 
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Ceratina smaragdula is a small, vividly 
 metallic-green carpenter bee (Figure 1) native 
to Southeast Asia ( Hirashima 1969), where 
it ranges widely from western India, east 
throughout China and the Ryukyu Islands, 
and south into Indonesia and Malaysia (van 
der Vecht 1952, Shiokawa and Sakagami 
1969). Ceratina smaragdula is a highly efficient 
generalist pollinator (van der Vecht 1952, 

 Batra 1976) and, like some members of 
Hawai‘i’s native genus Hylaeus, makes its nest 
within the narrow passages of pithy stems 
(Batra 1978, Maeta et al. 2010). Ceratina sma
ragdula has undergone documented global 
anthropogenic transport and was brought to 
Californian alfalfa farms in the early 1970s 
in an effort to promote crop production (Daly 
et al. 1971, Batra 1976). Though the species 

Figure 1. Female (left) and male (right) Ceratina (Pithitis) smaragdula: face, a, b; dorsal view, c, d; lateral view, e, f. Body 
length is between 6 and 8 mm on average. Note relatively prominent facial maculation and black abdominal patches 
of the male.
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never successfully established in California 
(Michener 2007), recent and increasingly fre-
quent detections of C. smaragdula across the 
Hawaiian Islands appear to indicate an ongo-
ing and potentially critical invasion event.

Ceratina smaragdula was first observed in 
Hawai‘i in 1984 and was found only on the 
island of O‘ahu at the time (Arakaki et al. 
2001, Snelling 2003). Ceratina smaragdula is 
known to have since spread south to the is-
land of Hawai‘i, but little has been done to 
directly assess the species’ invasive impact. 
Here, we present a detailed synthesis of C. 
smaragdula’s known biological and dispersal 
 history, along with a population genetic anal-
ysis of C. smaragdula within its native and 
 introduced ranges, to initiate comprehensive 
research and management of this invasive 
generalist.

materials and methods

Sample Collection Locations

Southeast Asian samples were collected in 
2008 from 21 locations across India, Thai-
land, Vietnam, and Malaysia (Figure 2a). 
Samples were collected via Malaise traps, nest 
sampling, and sweep-netting methods. Ha-
waiian samples were collected on the island of 
Maui in 2013 using pan-trap deployments 
(Leong and Thorp 1999). During both col-
lection periods, samples were secured from 
coastal and inland locales, ranging from low 
(0 – 150 m above sea level) to high altitude 
[1,200 to over 2,000 m above sea level (Sup-
plemental Table S1)]. Taken together, collec-
tions were made from sites separated by over 
13,000 km ( between the island of Maui in the 
Hawaiian archipelago and Lonavala, India).

Authors’ Note: Supplemental materials 
available on BioOne (http://www.bioone.org/  ) 
and Project MUSE (http://muse.jhu.edu /
journals/pacific_science).

DNA Extraction Amplification and Sequencing

All specimens, collected in Hawai‘i ( HA) and 
across Southeast Asia [India ( IN ), Thailand 
(TH ), Vietnam (  VI ), and Malaysia (MA)], 
were confirmed as Ceratina smaragdula using 
a key to Ceratina (Pithitis) of the world  
( Hirashima 1969). We removed three legs 

from the left side of each individual and ex-
tracted DNA from these tissues via a modified 
phenol-chloroform isolation (Kirby 1956). 
Isolated genetic material was amplified at 
the COI region following the methods of 
 Hebert et al. (2003), employing a slightly 
modified Lep1 (F + R) primer pair (Lep1F, 
5′-ATTCAACCAATCATAAAGATATT-
GG-3′; Lep1R, 5′-TAAACTTCTGGATG-
TCCAAAAAATCA-3′). PCR reactions were 
assembled as follows: 7.2 μl double distilled 
H2O, 2.0 μl 10× buffer, 2.0 μl MgCl2 [25 mM], 
1.0 μl Lep1-F [10 μM], 1.0 μl Lep1-R 
[10 μM], 0.4 μl dNTPs [10 mM], 2 units Taq, 
6.0 μl DNA for a 20 μl reaction volume. 
 Reactions were executed in an Eppendorf 
Mastercycler gradient thermocycler follow-
ing cycling  settings from Hebert et al. (2004): 
94°C for 1 min; followed by six cycles of 
94°C for 1 min, 45°C for 90 sec, and 72°C 
for 75 sec; followed by 36 cycles of 94°C for 
1 min, 51°C for 90 sec, and 72°C for 75 sec; 
followed by a final extension period of 72°C 
for 5 min. Amplification of the target locus 
was confirmed via electrophoresis (3 μl sam-
ple load, 1% agarose gel, 87V run, 10 – 45 min 
GelRed bath stain). Successful reactions were 
loaded into 96-well plates, and 17 μl of PCR 
product for each sample was sent to Eurofins 
Genomics (Louisville, Kentucky) for PCR 
cleanup and Sanger sequencing on an ABI 
3730xl  (Applied Biosystems).

Sequence Quality and Alignment

Sequences were visually inspected and 
 manually edited for base call accuracy using  
BioEdit software ( Hall 1999). Sequences 
 (GenBank accession numbers KU664397 –  
KU664499) were then aligned via ClustalW 
using default settings (Thompson et al. 1994) 
and trimmed to a consensus region of 593 un-
ambiguous, gap-free base pairs ( bp). We then 
screened the entire data set for Wolbachia con-
tamination via BLASTn database search.

Haplotype Diversity and Population 
Genetic Analyses

We assembled a minimum spanning tree in 
Haploview (Salzburger et al. 2011) partition-
ing individuals by collection location (i.e., 
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HA, IN, VI, TH, or MA). We ran all analyses 
of population genetic structure in Arlequin v 
3.5.1.2 (Excoffier and Lischer 2010). We per-
formed an analysis of molecular variance 

(AMOVA) to compare genetic variation 
 within and among regional populations, and 
ran Tajima’s D and Fu’s FS tests of neu-
trality ( based on 1,000 simulations) to assess 

Figure 2. (a) Global range of locations sampled, including India (green), Thailand (dark blue), Vietnam (light blue), 
Malaysia (purple), and Hawai‘i (orange). Insert details Hawaiian archipelago with previous records (orange) or new 
records (red) of C. smaragdula: O‘ahu (Arakaki et al. 2001), Hawai‘i (Magnacca 2007b), and Maui (Howarth and Pres-
ton 2007; this study). (b) Ceratina smaragdula 2013 collection locales from the island of Maui, Hawai‘i. Open black dia-
mond indicates site of first collection and detection in 2006 (one male and one female). Gray circles indicate 2013 
collection sites and sample counts (small, 1–2 bees; medium, 3–8; large, 9+); approximate elevation gradient and scale 
are portrayed; N indicates north.
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intraregional population dynamics. Wright’s 
F statistics were calculated and an exact test 
of sample differentiation was performed to 
determine FST and comprehensive pairwise 
differences between each regional population. 
We also calculated similar population struc-
ture parameters within our Hawaiian popula-
tion sample ( N = 39), subdividing the popula-
tion by longitude (at 156.2947° W, West 
Maui N = 20; East Maui N = 19).

results

New Records in Hawai‘i

Here we present an additional 39 records of 
C. smaragdula in Maui, Hawai‘i, and an addi-
tional 64 records of this species from across 
its native range. Elevation of individual col-
lection sites ranged from 1 to 2,176 m, with a 
collection altitude average of 210 m above sea 
level. In Hawai‘i, collection sites were mainly 
coastal, gathered from an average altitude of 
41 m, with only a handful collected from the 
central portion of Maui and at high elevation 
(819 and 2,176 m) (Figure 2b).

Population Structure Analysis

A total of 103 C. smaragdula sequences was 
generated for population genetic analysis 

(Supplemental Table S2). Regional popula-
tions of C. smaragdula did not vary signifi-
cantly from each other, as indicated by very 
few pairwise differences between or within 
populations and a nonsignificant overall FST 
of 0.033 (P = .108) (Table 1). The one excep-
tion was a significant genetic difference be-
tween Hawaiian and Thai populations with a 
very low FST of 0.056 (P = .002) and an aver-
age of 1.271 bp (0.2%) pairwise base pair dif-
ferences (P = .035). AMOVA of the Hawaiian 
population against the combined Southeast 
Asian cohort (i.e., India, Thailand, Vietnam, 
and Malaysia) revealed no significant popula-
tion structuring, also with a very low FST of 
0.014 (P = .133) and few (0.8 bp; 0.13%) pair-
wise differences (P = .135).

Minimum spanning tree construction 
 revealed 11 distinct haplotypes, with the most 
common haplotype present in both most 
 Hawaiian and most Southeast Asian samples 
( N = 87, 84% sequence identity) (Figure 3). 
There was no significant genetic structuring 
detected between eastern and western Maui 
populations despite the presence of three 
 distinct haplotypes (Supplemental Table S3) 
(FST < 0.001, P = .387). The majority of Ha-
waiian individuals ( N = 36, 92%) shared the 
“Haw01” haplotype, and individuals repre-
sentative of the two other Hawaiian haplo-

TABLE 1

Overall Population Structure of Ceratina smaragdula by Region versus Hawaiian Population

Region Hawai‘i Malaysia India Thailand Vietnam SE Asia

Hawai‘i 0.240 
(0.040)

0.328 
(0.055)

0.461 
(0.078)

1.271
(0.214)

0.378
(0.064)

0.769
(0.130)

Malaysia 0.117
(P 0.051)

0.355 
(0.06)

0.533 
(0.090)

1.343
(0.226)

0.450
(0.075)

India 0.118
(P 0.160)

0.067
(P 0.26)

0.667 
(0.112)

1.476
(0.249)

0.583
(0.098)

Thailand 0.056
(P 0.002)

0.004
(P 0.10)

0.031 
(P 0.479)

2.196
(0.370)

1.389
(0.234)

Vietnam 0.033
(P 0.055)

0.039
(P 0.18)

0.0186
(P 0.454)

0.019
(P 0.245)

0.500
(0.084)

SE Asia 0.014
(P 0.133)

1.262
(0.213)

Note: Diagonal indicates average pairwise differences within regions, and value in parentheses indicates representative percentage 
sequence divergence; above diagonal are average pairwise differences between regions, and parentheses indicate percentage sequence 
divergence between those regions; below diagonal are pairwise FST values. Significance values (P < .05) indicated in bold. Fixation index 
over all loci FST = 0.033 (P = .108).
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types were found mixed among these popula-
tions (Supplemental Table S1).

Tajima’s D scores were negative for all 
populations except Malaysia (Supplemental 
Table S4), with significant scores for Thai-
land (D = −1.605, P = .032), Vietnam (D =  
−1.974, P = .004), and the Southeast Asian 
 cohort (D = −2.315, P < .001). The more sen-
sitive Fu’s FS resulted in significantly negative 
values for only the Southeast Asian cohort as 
a whole (FS = −5.882, P = .009).

discussion

This work extends C. smaragdula’s known 
range across the island of Maui and provides 
new genetic and geographic records of the 
species. Our analyses demonstrate no sig-
nificant genetic variation between native and 
introduced populations. Though individuals 
collected from C. smaradula’s native range 
collectively represented the majority of ob-
served haplotype variation, low and nonsig-
nificant fixation indices (ranging between 
0.004 and 0.118) are evidence of little genetic 
structuring across populations. Our signifi-

cantly negative Tajima’s D and Fu’s FS values 
for the Southeast Asian cohort as a whole sup-
port a recent or ongoing population expan-
sion, with greatest population mobility re-
flected in the Thailand and Vietnam groups. 
Though nonsignificant, the negative Tajima’s 
D and Fu’s FS values for our Maui popula-
tion similarly suggest the possibility that 
this group may have recently undergone an 
expansion event.

Invasive Dispersal History

As detailed by Arakaki and colleagues (2001), 
C. smaragdula was first detected in Hawai‘i in 
1984 on the island of O‘ahu (Figure 2). The 
single specimen was considered anomalous 
at the time, and no record was announced. 
Three additional specimens were collected 
from O‘ahu in 1987, 1996, and 1997 (Arakaki 
et al. 2001). Ceratina smaragdula was sub-
sequently considered an established non-
native species on the island of O‘ahu, though 
still rare and limited to a coastal range (Figure 
2) (Snelling 2003). Shortly thereafter, in 2003, 
two female C. smaragdula were collected from 

Figure 3. Minimum spanning tree (MST) displaying haplotype variation among Ceratina smaragdula populations in 
Thailand (TH), Vietnam (VI), India (IN), Malaysia (MA), and Hawai‘i (HA). Each circle represents a unique haplo-
type; the number at the center of each circle represents the total number of individuals who share that haplotype.
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North Kona on the island of Hawai‘i (Mag-
nacca 2007b), where it appears to have spread 
rapidly along the island’s coast (Magnacca 
and King 2013). Then, in 2006, one male and 
one female C. smaragdula were collected from 
the Kahului Airport environs of Maui (Figure 
2b) ( Howarth and Preston 2007). Our report 
of C. smaragdula on Maui is based on a collec-
tion of samples gathered in 2013 (Figure 2b). 
Since its first detection on Maui, C. smarag
dula appears to have spread across the entirety 
of the island and, notably, may currently oc-
cupy a much broader elevational range than 
has previously been described. Expansion be-
yond coastal habitats and into high-elevation 
locations greatly extends the potential inva-
sive impact of C. smaragdula across the Ha-
waiian archipelago, as has been observed in 
another Ceratina species (C. dentipes) invasive 
to the Fijian Islands (da Silva et al. 2016).

Invasive Impact

Though no study has yet been performed 
to directly assess the impacts of C. smaragdula 
in Hawai‘i, studies on other invasive hy-
menopteran taxa across the archipelago pre-
dict future (Krushelnycky 2015) or current 
ecological displacement of native bees (Chau 
et al. 2015, Lee et al. 2015). Recent research 
has demonstrated dramatic disparities in 
 pollen carriage and plant fidelity between na-
tive Hylaeus and the invasive European honey 
bee, Apis mellifera, affording the latter a con-
siderable competitive advantage (Miller et al. 
2015). As a generalist, A. mellifera has little 
floral preference or limitation and will freely 
forage on both native and invasive angio-
sperm species. Like A. mellifera, C. smaragdula 
is a generalist pollinator (van der Vecht 1952, 
Batra 1976) and can thus be expected to pro-
mote the establishment and spread of invasive 
angiosperm species across the Hawaiian ar-
chipelago (Miller et al. 2015). Unlike honey 
bees, which have colonies with hundreds 
and thousands of foraging workers, C. sma
ragdula’s colony size is relatively small (fe-
males rear about eight offspring on average) 
(Maeta et al. 2010, Ali et al. 2016). Regardless 
of colony size, introduced bees can disturb 
native pollination services even when repre-

senting a relatively minor proportion of the 
total pollinator community (Kenta et al. 
2007). In addition, given C. smaragdula’s 
stem-nesting biology (Batra 1976, Rehan 
et al. 2009, Ali et al. 2016), it may be in direct 
competition with members of native Hylaeus 
for habitable resources.

Hylaeus have diversified widely across the 
Hawaiian archipelago and currently comprise 
over 63 species (Daly and Magnacca 2003, 
Magnacca 2011), of which 40 are considered 
single-island endemics (Magnacca 2007a). All 
Hylaeus are solitary bees that burrow into the 
earth, occupy hollow stems, or secure other 
preexisting cavities to establish their nests 
(Daly and Magnacca 2003). This adaptability 
has enabled the genus to collectively occur in 
all habitable terrains across the archipelago 
(Magnacca 2007a, Koch and Sahli 2013). 
Though relatively little is yet understood re-
garding the natural history, general biology, 
and specific nesting habits of Hylaeus species 
in Hawai‘i, the implications of ongoing spe-
cies losses are dire. As Hawai‘i’s only native 
bee genus, Hylaeus are of considerable impor-
tance to the reproductive success of endemic 
angiosperm species ( Hopper 2002, Magnacca 
2007a), many of which may be poorly 
equipped to compete with introduced flora 
(Denslow et al. 2006, Gallaher and Merlin 
2010).

It is possible that C. smaragdula is having a 
positive impact on native flora, though these 
data are currently lacking. In other systems, 
an introduced generalist (A. mellifera) was 
found to be a comparably effective pollinator 
group with native bee species (Freitas and 
Paxton 1998, Gross 2001, Dupont et al. 2004). 
Thus, though C. smaragdula may contribute 
to the competitive exclusion of native Hylaeus, 
it may also help to maintain pollination ser-
vices historically carried out by that group.

Possible Means of Introduction

Current analysis of the COI locus revealed 
less population structure than expected, both 
within and between C. smaragdula’s native 
and introduced ranges. This observed genetic 
homogeneity suggests that these populations 
have been in geographic isolation for rela-



Range Expansion of Small Carpenter Bee in Hawai‘i ·  Shell and Rehan 9

tively little time. This idea is further sup-
ported by historic records, which indicate that 
C. smaragdula initially arrived on Hawai‘i 
within the last 40 yr (Arakaki et al. 2001, 
 Snelling 2003). It is theorized that terrestrial 
animals colonize islands primarily via one 
of three modes: island hopping (e.g., Garb 
and Gillespie 2006), long-distance dispersal 
(LDD) (Bellemain and Ricklefs 2008), or 
through anthropogenic facilitation (Reaser 
et al. 2007, Däumer et al. 2012). Island hop-
ping, for instance, has been observed in many 
arthropod species [e.g., bees (Dafni et al. 
2010, Chenoweth and Schwarz 2011); tree 
crickets (Tinghitella et al. 2011); leaf hoppers 
(Su et al. 2014)] and has been suggested as a 
means of long-range bee dispersal across the 
Southwest Pacific (Schwarz et al. 2006).

Many bee groups, including genus Cera
tina, are known for their capacity for long- 
distance dispersal (Rehan et al. 2010, Rehan 
and Schwarz 2015). Oil-collecting bees 
(Ctenoplectrini) (Schaefer and Renner 2008), 
stingless bees (Meliponini) (Rasmussen and 
Cameron 2010), and some allodapine bees 
(genus Braunsapis) (Fuller et al. 2005) are all 
considered to have reached their current 
 distributions via LDD, over both continental 
and oceanic expanses. Moreover, Hawai‘i’s 
native Hylaeus are considered the descendants 
of a single pre-historic introduction following 
a chance LDD event out of East Asia (Daly 
and Magnacca 2003, Magnacca and Danforth 
2006). Although it is unlikely that C. smarag
dula reached Hawai‘i via oceanic LDD, the 
apparent high mobility of populations in its 
native range may support LDD as an ongo-
ing means of invasive establishment between 
the Islands. Historically, the vast majority 
of Hawai‘i’s invasive species were introduced 
via some form of anthropogenic mediation 
( Howarth 1985), and it is not unreasonable to 
expect that C. smaragdula arrived by similar 
means.

Ceratina smaragdula was intentionally 
transported to California in the 1970s for 
 agricultural purposes (Daly et al. 1971), but, 
unlike A. mellifera (Eckert 1951), there are 
no records of its introduction to Hawai‘i. As 
such, any human transport is likely to have 
been accidental. As a stem-nesting bee, it is 

conceivable that C. smaragdula may have been 
brought to O‘ahu within any number of orna-
mental and fruit-bearing softwood plants 
widely imported from Southeast Asia to the 
Hawaiian Islands (Schmidt and Drake 2011). 
Numerous shipments of exotic plants could 
have contained unseen C. smaragdula, un-
wittingly collected from otherwise disparate 
native populations. This “introduction by im-
port” could explain the higher than expected 
haplotype variation of the Hawaiian popula-
tion. Elsewhere, fruiting bramble (Rubus) spe-
cies are preferentially occupied by Ceratina, 
because they represent a reliable pollen re-
source and ideal pithy plant for nest construc-
tion (Kislow 1976, Rehan and Richards 2010, 
McFrederick and Rehan 2016). Himalayan 
yellow raspberry (Rubus ellipticus) (Starr et al. 
2003) was originally introduced to Hawai‘i 
for agricultural experimentation (Degener 
and Degener 1968) and has rapidly become 
one of the archipelago’s most noxious invasive 
plants (Starr et al. 2003). Rubus ellipticus shares 
much of its native range with that of C. sma
ragdula, and, although it is uncertain to have 
been the vector for initial introduction, fur-
ther research could reveal whether the two 
species are mutually aiding one another’s con-
tinued establishment across Hawai‘i.

conclusions

Here we present additional genetic records 
and document a range expansion of C. sma
ragdula across Maui. These data reveal an 
 extended distribution of this species to both 
inland and high-elevation habitats. Molecular 
analyses demonstrate little genetic distinction 
between this species’ introduced and native 
populations and indicate a recent introduc-
tion to the archipelago, most likely via 
 anthropogenic facilitation. Future molecular 
analyses could benefit from targeting micro-
satellite loci or single-nucleotide polymor-
phisms for fine-scale exploration of native and 
invasive population structures. Further sys-
tematic surveys across each of the Hawaiian 
Islands are also necessary to better assess C. 
smaragdula’s expanding distribution and ecol-
ogy. More broadly, additional biofaunistic 
and genetic studies are critical to understand-
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ing the dynamics underlying invasive pollina-
tor dispersal, establishment, and impact.
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